MARIN experience with offshore energy
Delft 2016

Presented by:
Erik-Jan de Ridder
e.d.ridder@marin.nl
Independent and innovative service provider for the maritime sector in hydrodynamic and nautical research
MARIN’S ACTIVITIES
OUTLINE

• **Introduction**
 - Wave energy potential
 - History
 - Challenges

• **WEC types**

• **WEC design**

• **Questions? Discussion**
• **World wave energy potential:**

- Wave energy generally considered most concentrated and least variable form of renewable energy

- World Energy Council estimates that approximately 2 terawatts can be produced from wave power.

- Wave power per meter wave crest \([W/m]\):

 \[
 P = \text{energy density} \times \text{group velocity} \\
 = \begin{cases}
 \frac{\rho g H^2}{8} \times \sqrt{\frac{T}{\lambda}} & \text{for shallow water} \\
 \frac{\rho g H^2}{8} \times \sqrt{\frac{T}{\lambda}} / 2 & \text{for deep water}
 \end{cases}
 \]
World wave energy potential: 2000 GW
• **Challenges of wave energy conversion:**

 ✓ Wear and tear
 ✓ Mooring, installation and maintenance
 ✓ Survival in extreme conditions
 ✓ Irregularity and omnidirectionallity of waves
 ✓ Performance in combination with current and wind
 ✓ Complex transformation of energy (PTO):
 • Design
 • Robustness
 • Control

The WEC industry is a relatively new sector (which has not matured yet). There are lots of ideas and concepts, but very few operational systems.
Unlike the case in the wind turbine industry, there are as many types of WECs as there are ideas:

- OPT PowerBuoy
- WaveDragon
- Oyster
- Pelamis
- DanWEC
- Mighty Whale
- Pico
• Oscillating Water Column (OWC):

RenewABLE concept (floating)
• **Floating oscillator (in heave): Wavebob**

- 2 body buoy
- Energy extracted from relative motions between 2 bodies
- Spread moored
- Omnidirectional

1/4th scale model, Galway Bay (Ireland), 2008.
• **Attenuator: Pelamis**

- Multibody with hydraulic joints
- Energy extracted from relative motions between 2 bodies
- Weathervaning

3-unit farm, Portugal, 2008.

Hydraulic PTO
Overtopping device: Wave dragon

- Large collector to focus wave energy
- Reservoir above MWL
- Water turbine acts as PTO

1/4th scale model, Denmark, 2005.
• Use existing offshore knowledge and tools to assess design of wave energy converter:

✓ Model tests
 ✓ Influence of irregular (short scrested) waves
 ✓ Influence of wind and current
 ✓ (Non-linear) PTO-floater-mooring interactions
 ✓ Array testing
 ✓ Survivability

✓ Numerical simulations
 ✓ Optimization of floater geometry
 ✓ Influence of different PTO settings

✓ Analysis of PTO control strategies
Sensors and PTO

- Motion capture LEDs
- Submergence level: resistance gauges
- Linear motor PTO
- 6DOF accelerometer
- 6DOF force frame
Numerical simulation example:

Renewable concept

✓ Floating OWC type WEC
✓ Parameter study in frequency domain:

GOAL: maximize the vessel motions
• Numerical simulation example (Renewable concept):

Displaced water per wave cycle at moonpool fore (wave dir. = 180 deg)*

- with 20m² moonpools
- with 30m² moonpools
- with 40m² moonpools
- with 50m² moonpools
• **Numerical simulation example (Renewable concept):**

Relative water motion due to pitch..
• Numerical simulation example (Renewable concept):

Relative water motion at moonpool natural frequency..
MARIN’S ACTIVITIES IN OFFSHORE WIND

- Development
- Fabrication
- Transportation
- Installation
- Production
- Removal
- Maintenance & Support
MARIN’S ACTIVITIES IN OFFSHORE WIND

Challenging phases where MARIN helps:

- **Maintenance:**
 - Offshore maintenance JIP
 - Logistics simulation tool

- **Installation:**
 - Wind Jack JIP
 - Impact loads on jack-up legs

- **Operation:**
 - WiFi JIP
 - Impact loads on fixed wind turbines

Alternative to fixed offshore turbines:

- Floating wind turbines JIP
Advantages:
- Water depth > 50m
- Higher wind speed
- Increase size to >10MW
- Large repair in the harbour

Disadvantages:
- No proven technology
- A large no. of designs in the market

Energy Technologies Institute (ETI) 2009

source: Carbon Trust Floating offshore wind market and technology review June 2015
Floating wind is interesting from water depths >50m

source: Carbon Trust Floating offshore wind market and technology review June 2015
>14 commercial floating wind turbine projects:

- Sway floating wind
- Cantabria floating wind
- DeepCwind Maine floating wind (2011-2013)
- EU project Deepwind (2011)
- GustoMSC-ECN-MARIN floating wind tool MIP project
- Gicon floating wind turbine
- OC4 model tests (2013)
- Hexicon 2015
-
The DeepWind vertical-axis wind turbine in front of the high quality wind generator set-up
The DeepWind vertical-axis wind turbine in front of the high quality wind generator set-up
DIFFERENT TYPE OF FLOATING WIND TURBINES

Spar:
Ballast Stabilized
Spar buoy with catenary mooring, drag-embedded anchors

Semi:
Buoyancy Stabilized
Barge with catenary mooring lines

TLP:
Mooring Line Stabilized
Tension leg platform with suction pile anchors

Turbine with Spar floater
Turbine with Semi floater
Turbine with TLP floater
DIFFERENT TYPE OF FLOATING WIND TURBINES

- **Ballast Stabilized**: Spar buoy with catenary mooring, drag-embedded anchors
- **Buoyancy Stabilized**: Barge with catenary mooring lines
- **Mooring Line Stabilized**: Tension leg platform with suction pile anchors
CONCEPTS UNDERDEVELOPMENT

Figure 2.5.1. Typologies under development

- Semi-sub, 14
- TLP, 7
- Spar, 6
- Multi-turbine platform, 3
- Hybrid wind/wave, 3

source: Carbon Trust Floating offshore wind market and technology review June 2015
FLOATING WIND TURBINE MODEL TESTS

- http://www.marin.nl/web/file?uuid=95681c77-ff2f-4f79-91bc-b31467d56a5f&owner=686da46b-6ba6-48da-ad3e-633be762da3e
COST BREAK DOWN

source: Carbon Trust Floating offshore wind market and technology review June 2015
• Floating wind turbines with multiple wind turbines:
QUESTIONS?