Cooperative Multi-Vessel System

Linying Chen
Prof. Rudy R. Negenborn
Prof. J. J. Hopman

Department of Maritime and Transport Technology
Faculty of Mechanical, Maritime and Materials Engineering (3mE)
EMAIL: L.chen-2@tudelft.nl; R.R.Negenborn@tudelft.nl; J.J.Hopman@tudelft.nl.
Contents

1. Background

2. Cooperative Multi-Vessel System (CMVS)

3. Intra-CMVS V2V cooperation
 • Vessel Train Formation (VTF)

4. Inter-CMVS V2V cooperation
 • Waterway Intersection Scheduling (WIS)

5. Conclusion and future research
Background

1. Background
2. CMVS
3. Intra-CMVS
 -- VTF
4. Inter-CMVS
 -- WIS
5. Conclusion

- Problem
 - Safety
 - Misunderstanding
 - Unexpected incidents
 - Efficiency
 - Congestion at locks and ports
 - Task performing
 - Tasks which cannot be fulfilled by individual vessels, such as towing large structures, searching, etc.
Background

- Cooperation as a solution
 - Safety:
 - Efficient decision making
 - Fast reaction to unexpected incidents
 - Organized traffic
 - Efficiency:
 - Improve the utilization rate
 - Saves line-up time
 - Task performing:
 - Cooperation of a group of vessels can carry out tasks more efficiently and effectively
Cooperative Multi-Vessel System

1. Background
2. CMVS
3. Intra-CMVS -- VTF
4. Inter-CMVS -- WIS
5. Conclusion
Cooperative Multi-Vessel System

1. Background
2. CMVS
3. Intra-CMVS -- VTF
4. Inter-CMVS -- WIS
5. Conclusion

• Intra-CMVS Vessel-to-Vessel cooperation
 – Vessel Train Formation

• Inter-CMVS Vessel-to-Vessel cooperation
 – Waterway Intersection Scheduling

• Vessel-to-Infrastructure cooperation
Cooperative Multi-Vessel System

• Method: Model Predictive Control
 – Consider conflicts at an early stage
 – Up-to-date information
 – Control of large-scale networked systems

1. Background
2. CMVS
3. Intra-CMVS
 -- VTF
4. Inter-CMVS
 -- WIS
5. Conclusion
Intra-CMVS V2V cooperation -- Vessel Train Formation

- **Path following:**
 - attempt to follow the predetermined paths;

- **Aggregation:**
 - attempt to stay close to nearby vessels;

- **Collision avoidance:**
 - avoid collisions with nearby vessels.
Intra-CMVS V2V cooperation -- Vessel Train Formation

- Centralized & distributed control
Intra-CMVS V2V cooperation
--- Vessel Train Formation

• Centralized formulation

\[
\text{minimize } \sum_{i=1}^{n} J_i (\tilde{u}_i(k)) = \sum_{\tau=1}^{H_p} \sum_{j \in N_i} \left(\alpha \| y_i(k + \tau | k) - w_i(k + \tau) \|_I + \beta \| d_{ij|i}(k + \tau | k) + \delta_{ij|i}(k + \tau | k) \|_I + \gamma \| u_i(k + \tau - 1 | k) \|_I \right)
\]

Path following
Aggregation
Control efforts

subject to \(\forall i \in N, j \in N_i, \forall k \in T, \forall \tau \in H_p : \)

\[
\text{Input constraint} \quad u_{\text{min}} \leq \| u_i(k + \tau | k) \|_2 \leq u_{\text{max}}, \\
\text{Velocity constraint} \quad q_{\text{min}} \leq \| q_i(k + \tau | k) \|_2 \leq q_{\text{max}}, \\
\text{Collision avoidance} \quad d_{ij|i}(k + \tau | k) \geq d_{\text{safe}}, \\
\text{Aggregation constraint} \quad -r \leq \delta_{ij|i}(k + \tau | k) \leq r, \\
\quad r = \min(r_1, r_2, \ldots, r_n).
\]
Intra-CMVS V2V cooperation
-- Vessel Train Formation

• Distributed formulation
 – ADMM-based serial iterative algorithm

a) Each vessel solves a local problem and sends the predictive trajectory to others.
b) Information updates in sequence
c) Iterations stop when

\[u_s^i = z_s^i = z_s^{i-1} \]
1. **Background**

2. **CMVS**

3. **Intra-CMVS V2V -- Vessel Train Formation**

 - Simulation experiments
 - Influencing factors
 - Updating sequence

Maritime & Transport Technology

![Diagram](image-url)
Intra-CMVS V2V cooperation
-- Vessel Train Formation

• Simulation experiments
 – Influencing factors
 • Responsibility

\[
z_i^s(k) = u_i^s(k) + \lambda_i^{s-1}(k)/\rho_i
\]
\[
\therefore z_i^s(k) = \varphi_i u_i^s(k) + (1 - \varphi_i)z_i^{s-1}(k) + \lambda_i^{s-1}(k)/\rho_i,
\]
\[
\sum_{i=1}^{n} \varphi_i \geq 1, \quad 0 \leq \varphi_i \leq 1.
\]
Intra-CMVS V2V cooperation
-- Vessel Train Formation

1. Background
2. CMVS
3. Intra-CMVS
 -- VTF
4. Inter-CMVS
 -- WIS
5. Conclusion

Maritime & Transport Technology

TU Delft
1. Background

Intra-CMVS V2V cooperation

-- Vessel Train Formation

- Simulation experiments
 - Influencing factors
- Responsibility

Maritime & Transport Technology

 TU Delft
Intra-CMVS V2V cooperation
-- Vessel Train Formation

• Simulation experiments
 – Scalability
Intra-CMVS V2V cooperation
-- Vessel Train Formation

1. Background
2. CMVS
3. Intra-CMVS -- VTF
4. Inter-CMVS -- WIS
5. Conclusion
1. Background
2. CMVS
3. Intra-CMVS

• Simulation of a CMVS

Inter-CMVS V2V cooperation -- Waterway Intersection Scheduling

- **Time-space occupation**
 - a vessel passing through an intersection can be regarded as occupying some blocks for a certain period.
Inter-CMVS V2V cooperation -- Waterway Intersection Scheduling

• **Sequential constraint:**
 – a vessel passes through the blocks in a predetermined sequence;

• **No-wait constraint:**
 – a vessel has to enter the next block immediately when it leaves a block;

• **Disjunctive constraint:**
 – other vessels cannot enter a block until the one inside leaves the block.
Inter-CMVS V2V cooperation -- Waterway Intersection Scheduling

1. Background
2. CMVS
3. Intra-CMVS -- VTF
4. Inter-CMVS -- WIS
5. Conclusion
Inter-CMVS V2V cooperation -- Waterway Intersection Scheduling

- Simulation experiments

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>P₁</th>
<th>P₂</th>
<th>P₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{left}</td>
<td>$V₀$</td>
<td>(C₄, 804, 804)</td>
<td>(C₁, 801, 801)</td>
<td>(C₂, 802, 802)</td>
</tr>
<tr>
<td>D_{left}</td>
<td>$V₁$</td>
<td>(C₄, 814, 814)</td>
<td>(C₃, 813, 813)</td>
<td>(C₄, 823, 823)</td>
</tr>
<tr>
<td>D_{right}</td>
<td>$V₂$</td>
<td>(C₄, 824, 824)</td>
<td>(C₃, 833, 833)</td>
<td>(C₄, 844, 844)</td>
</tr>
<tr>
<td>D_{right}</td>
<td>$V₃$</td>
<td>(C₄, 834, 834)</td>
<td>(C₃, 833, 833)</td>
<td>(C₄, 844, 844)</td>
</tr>
<tr>
<td>D_{down}</td>
<td>$V₄$</td>
<td>(C₄, 844, 844)</td>
<td>(C₃, 833, 833)</td>
<td>(C₄, 844, 844)</td>
</tr>
<tr>
<td>O_{right}</td>
<td>$V₅$</td>
<td>(C₂, 852, 852)</td>
<td>(C₃, 853, 853)</td>
<td>(C₄, 854, 854)</td>
</tr>
<tr>
<td>D_{left}</td>
<td>$V₆$</td>
<td>(C₂, 862, 862)</td>
<td>(C₁, 861, 861)</td>
<td>(C₂, 871, 871)</td>
</tr>
<tr>
<td>D_{left}</td>
<td>$V₇$</td>
<td>(C₂, 872, 872)</td>
<td>(C₁, 871, 871)</td>
<td>(C₂, 871, 871)</td>
</tr>
<tr>
<td>O_{top}</td>
<td>$V₈$</td>
<td>(C₁, 881, 881)</td>
<td>(C₄, 884, 884)</td>
<td>(C₃, 883, 883)</td>
</tr>
<tr>
<td>D_{left}</td>
<td>$V₉$</td>
<td>(C₁, 891, 891)</td>
<td>(C₄, 884, 884)</td>
<td>(C₃, 883, 883)</td>
</tr>
</tbody>
</table>
Inter-CMVS V2V cooperation -- Waterway Intersection Scheduling

- **Simulation experiments**
 - Scenario I: Non-cooperative case
 - Arrivals -- Poisson distribution
 - Intersection Crossing -- Artificial Potential Field
 - Scenario II: Partially-cooperative case
 - Arrivals -- VTF
 - Intersection Crossing -- Artificial Potential Field
 - Scenario III: Fully-cooperative case
 - Arrivals -- VTF
 - Intersection Crossing -- WIS
Inter-CMVS V2V cooperation -- Waterway Intersection Scheduling

1. Background
2. CMVS
3. Intra-CMVS

• Simulation Results

Inter-CMVS V2V cooperation -- Waterway Intersection Scheduling

• Simulation Results
 – Overall makespan and the passing time

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Scenario I</th>
<th>Scenario II</th>
<th>Scenario III</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₀</td>
<td>77</td>
<td>31</td>
<td>36.56</td>
</tr>
<tr>
<td>V₁</td>
<td>68</td>
<td>69</td>
<td>67.49</td>
</tr>
<tr>
<td>V₂</td>
<td>68</td>
<td>67</td>
<td>67.49</td>
</tr>
<tr>
<td>V₃</td>
<td>67</td>
<td>68</td>
<td>67.49</td>
</tr>
<tr>
<td>V₄</td>
<td>59</td>
<td>49</td>
<td>50.09</td>
</tr>
<tr>
<td>V₅</td>
<td>51</td>
<td>51</td>
<td>51.00</td>
</tr>
<tr>
<td>V₆</td>
<td>199</td>
<td>240</td>
<td>98.25</td>
</tr>
<tr>
<td>V₇</td>
<td>102</td>
<td>119</td>
<td>98.25</td>
</tr>
<tr>
<td>V₈</td>
<td>125</td>
<td>128</td>
<td>114.03</td>
</tr>
<tr>
<td>V₉</td>
<td>10</td>
<td>12</td>
<td>14.76</td>
</tr>
<tr>
<td>Average</td>
<td>82.6</td>
<td>83.4</td>
<td>66.54</td>
</tr>
<tr>
<td>Makespan</td>
<td>288</td>
<td>295</td>
<td>270.98</td>
</tr>
</tbody>
</table>
Conclusion and Future research

• Conclusion
 – The concept of CMVSs
 – A serial iterative ADMM-based DMPC algorithm for VTF of a CMVS
 – WIS for V2V interaction between CMVSs

• Future research
 – Intra-CMVS Vessel-to-Vessel cooperation
 • Task Performing Formation
 – Vessel-to-Infrastructure cooperation
 • Predictive scheduling for locks
More...

http://negenborn.net/rudy/

Lining CHEN, L.chen-2@tudelft.nl