Programme overview Applied Geophysics

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules and Courses TU Delft (30 EC)</td>
<td>Core Modules and Courses RWTH Aachen (30 EC)</td>
</tr>
<tr>
<td>Core Modules and Courses ETH Zurich (30 EC)</td>
<td>MSc Thesis (30 EC)</td>
</tr>
</tbody>
</table>

In the programme we distinguish four categories, for each category you can find the details in the figure below:

TU Delft
- **Core Modules (3 out of 3 must be passed)**
 - Electromagnetic Exploration Methods
 - Advanced Reflection Seismology and Seismic Imaging
 - Field Geophysics and Signal Analysis (Matlab/Python)

- **Courses**
 - Geophysics Special Subjects
 - Seismic Acquisition to Data Information Content
 - Geodesy and Remote Sensing
 - Geology for Geo-Energy

- **MSc Thesis**
 - The MSc thesis can be written at one of the three partner universities.

ETH Zurich
- **Core Modules (3 out of 3 must be passed)**
 - 1 Numerical Modelling for Applied Geophysics I
 - 1 Inverse Theory for Applied Geophysics I: Basics
 - 2 Geophysical Fieldwork & Processing: Methods
 - 2 Geophysical Fieldwork & Processing: Prep & Fieldwork
 - 3 Reflection Seismology Processing

- **Courses**
 - Geofluids
 - Case studies in Exploration and Environmental Geophysics
 - Numerical Modelling for Applied Geophysics I
 - Inverse Theory for Applied Geophysics II
 - Inverse Theory for Applied Geophysics II: Applications
 - Geothermal Energy
 - Mathematik V: Angewandte Vertiefung vor Mathematik I-III

RWTH Aachen
- **Core Modules (2 out of 6 must be passed)**
 - 1 Geophysics Special Methods: NMR
 - 1 Geophysics Special Methods: Spectral IP
 - 2 Geophysical Logging and Log Interpretation
 - 3 Geothermics
 - 4 Hydrogeophysics
 - 4 Data Analysis in Geoscience
 - 5 Numerical Reservoir Engineering
 - 6 Numerical Methods for Geophysical Flow

- **Courses**
 - Sedimentary Basin Dynamics
 - Petroleum System Modelling
 - Portfolio Management
 - Prospect Evaluation and Risk Analysis
 - Introduction to Languages for Scientific Computing
 - Finite Elements in Fluids
 - Mining Waste, Emission and Environment
 - Economics of Technological Diffusion