Society depends on products and processes that we often take for granted but which require knowledge starting at molecular level to make goods such as cosmetics, food products and electronic equipment, to carry out essential activities such as waste management and to design and produce pharmaceuticals and healthcare products. Chemical Engineering covers a wide range of subjects at all levels: molecular science, including the emerging field of nanochemical engineering; the design and analysis of chemical reactors; and the application of chemical engineering in manufacturing processes. The programme has a strong emphasis on innovative thinking and stresses multidisciplinary problem solving using a systematic approach, incorporating considerations of sustainability, economics and social welfare into the analytical process. The fundamental goal of the Master’s programme is to provide students with both a breadth and a depth of knowledge sufficient to prepare them for careers in research or to work in industry at either the design or operational level.

Programme
The TU Delft Master of Science programme in Chemical Engineering aims to provide students with a solid foundation in chemical engineering science while preparing them for a broad range of career opportunities. We believe that chemical engineering is a bridging discipline and that students should be able to work together with chemists, biologists, mathematicians and physicists. The programme, with a primary emphasis on the underlying sciences, gives students the opportunity to personalise their curriculum and to choose the particular study path that will prepare them best for their future careers. The programme challenges students to solve open-ended problems and teaches critical thinking skills, teamwork and open discussion.
Curriculum Chemical Engineering

The Chemical Engineering programme is a two-year Master’s programme and comprises 120 EC. 1 EC = 28 hours of study, according to the European Credit Transfer System (ECTS). The programme has a core of 90 EC, consisting of:

- 30 EC compulsory courses (50% track related).
- 20 EC design courses and project (2 months fulltime project work in teams of 4-5 students).
- 40 EC Master’s thesis work to be carried out in a research group within the university.

ECTS. The programme has a core of 90 EC, consisting of:

- 30 EC compulsory courses (50% track related).
- 20 EC design courses and project (2 months fulltime project work in teams of 4-5 students).
- 40 EC Master’s thesis work to be carried out in a research group within the university.

1 EC = 28 hours of study, according to the European Credit Transfer System (ECTS). The programme has a core of 90 EC, consisting of:

- 30 EC compulsory courses (50% track related).
- 20 EC design courses and project (2 months fulltime project work in teams of 4-5 students).
- 40 EC Master’s thesis work to be carried out in a research group within the university.

EDUCATION TEACHING LICENSE FOR DUTCH SECONDARY SCHOOL-COURSES AND PRACTICAL ASSIGNMENTS.

Entrepreneurship (course and project work related to the start-up of a company)

Most students choose the first option.

Roughly speaking, the first year comprises course work and a design project, while the second year is primarily devoted to thesis work and an industrial internship.

Programme Tracks

The programme offers two tracks and a scientific and societal orientation for all students with a chemical engineering background. Students choose one of the tracks:

- Process Engineering involves the design and operation of manufacturing processes and is essential in our technology-dependent, industrialised society. The track covers advanced chemical engineering courses and the underlying fundamentals.
- Research covers subjects such as microfluidics, nanoparticle technology, catalysis and multiphase systems. The track-related compulsory courses are: Reactors and Kinetics, Process Dynamics and Control and Applied Transport Phenomena.

For more information on all courses: www.chem.msc.studyguide.tudelft.nl

First Year

<table>
<thead>
<tr>
<th>1st quarter</th>
<th>2nd quarter</th>
<th>3rd quarter</th>
<th>4th quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Numerical Methods (6 EC)</td>
<td>Track-related courses (see text, 15 EC)</td>
<td>Product & Process Design (6 EC)</td>
<td>Electives (9-12 EC)</td>
</tr>
<tr>
<td>Molecular Thermodynamics (6 EC)</td>
<td></td>
<td>Ethics & Engineering (3 EC)</td>
<td></td>
</tr>
<tr>
<td>Molecular Transport Phenomena (3 EC)</td>
<td></td>
<td>Design Project (12 EC)</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

Flexible

Master Thesis Project (40 EC)

Industrial Internship (18 EC)

Elective (0-3 EC)

Programme Tracks

The programme offers two tracks and a scientific and societal orientation for all students with a chemical engineering background. Students choose one of the tracks:

- Process Engineering involves the design and operation of manufacturing processes and is essential in our technology-dependent, industrialised society. The track covers advanced chemical engineering courses and the underlying fundamentals.

- Research covers subjects such as microfluidics, nanoparticle technology, catalysis and multiphase systems. The track-related compulsory courses are: Reactors and Kinetics, Process Dynamics and Control and Applied Transport Phenomena.

For more information on all courses: www.chem.msc.studyguide.tudelft.nl

Chemical Product Engineering

Involves the design and synthesis of products, ranging from pharmaceuticals to building materials. The development and manufacture of new materials and new devices include nanoparticles, solar cells, energy storage devices, sensors, and advanced polymers. This track has a stronger focus on chemistry and molecular sciences. Research groups work in the field of fundamentals of nanostructured materials, energy conversion and the syntheses of new components.

The track-related compulsory courses are:

- Design and Synthesis of Advanced Chemical Products
- Structure/Property Relationships of Advanced Chemical Products
- Soft Matter for Chemical Products

Graduation projects

Some examples of recent graduation projects are:

- Pol-alloy dense metal membranes for hydrogen separation.
- Influence of Pressure on Atomic Layer Deposition on Nanoparticles in Fluidized Bed Reactors.
- Removal of oxygenated organic compounds from a liquid toluene stream by adsorption.
- The loading and retention characteristics of polymersomes as radionuclide carriers.

Career Prospects

Innovative, creative thinking on the part of chemical engineers is essential for process and product innovation. Most of our graduates work in industry, either in the Netherlands or elsewhere. Many graduates have found a position within leading companies such as Shell, AkzoNobel, DSM, Exxon Chemical, Heineken, ING, BASF, Philips, Proctor & Gamble, and Unilever. Others have joined consultancy firms or started their own businesses.

The programme is internationally accredited by the Institution of Chemical Engineers (IChemE), the global professional membership organisation for chemical, biochemical and process engineers.

Malcolm Meyer (South Africa)

Career Prospects

Innovative, creative thinking on the part of chemical engineers is essential for process and product innovation. Most of our graduates work in industry, either in the Netherlands or elsewhere. Many graduates have found a position within leading companies such as Shell, AkzoNobel, DSM, Exxon Chemical, Heineken, ING, BASF, Philips, Proctor & Gamble, and Unilever. Others have joined consultancy firms or started their own businesses.

The programme is internationally accredited by the Institution of Chemical Engineers (IChemE), the global professional membership organisation for chemical, biochemical and process engineers.

Divya Bohra (India)
Admission requirements and application procedures

BSc degree from a Dutch university
Graduates with a BSc in Chemical Engineering are eligible for admission. BSc graduates in Chemistry, Life Science and Technology, Applied Earth Sciences, Applied Physics, Mechanical Engineering and Aerospace Engineering may be admitted, but are-in general-required to follow a bridging programme.

As a guideline a minimum Grade Point Average of 75% is required for admission. Application proceeds through Studielink: www.tudelft.studielink.nl

Degree from a Dutch university of applied sciences (Dutch HBO)
Applicants with a degree in Chemical Engineering or a closely related field may be eligible for admission after completing a bridging programme. As a guideline a minimum Grade Point Average of 75% is required for admission to the bridging programme, and proof of English language proficiency of at least 90 on the TOEFL or an overall Band score of at least 6.5 on the IELTS (academic version).

For international students, the application period starts in October and closes at April 1st. To start an MSc application, complete the online application and pay the refundable application fee of € 100. Next, you will receive an email with the link to upload the required documents.

Please note that you should apply, before December 1st, if you wish to be considered for a scholarship as well. For more information about the application procedure and studying at TU Delft in general, go to: www.admissions.tudelft.nl

International Applicants
International applicants must meet the general admission requirements of TU Delft.

1. A BSc degree (or a proof that you have nearly completed a BSc programme) in Chemical Engineering or a closely related field.
2. A BSc Cumulative Grade Point Average (CGPA) of at least 75% of the scale maximum
3. Proof of English language proficiency of at least 90 on the TOEFL or an overall Band score of at least 6.5 on the IELTS (academic version).

Introduction week
All international students will be welcomed with the award-winning introduction programme. The introduction consists of a variety of workshops and projects, during which you will get to know other international students, visit the highlights of Delft and learn the ins and outs of the TU Delft campus.

Please visit the webpage for all details, along with a full list of requirements, deadlines and contact information: www.chem.msc.tudelft.nl

For further information
Please visit the webpage for all details, complete requirements, deadlines and contact information: www.chem.msc.tudelft.nl

Further information for international applicants
Ms. Tamara Bacsik,
International Recruitment Officer
T +31 (0)15 27 88180
E msc-tnw@tudelft.nl

Further information for Dutch applicants
Sinan Al-Attar, Programme Coordinator
T +31(0)152783633
E s.ai-attar@tudelft.nl

Faculty of Applied Sciences
Lorentzweg 1
2628 CJ Delft

Introduction week
All international students will be welcomed with the award-winning introduction programme. The introduction consists of a variety of workshops and projects, during which you will get to know other international students, visit the highlights of Delft and learn the ins and outs of the TU Delft campus.

Please visit the webpage for all details, along with a full list of requirements, deadlines and contact information: www.chem.msc.tudelft.nl

For further information
Please visit the webpage for all details, complete requirements, deadlines and contact information: www.chem.msc.tudelft.nl

Further information for international applicants
Ms. Tamara Bacsik,
International Recruitment Officer
T +31 (0)15 27 88180
E msc-tnw@tudelft.nl

Further information for Dutch applicants
Sinan Al-Attar, Programme Coordinator
T +31(0)152783633
E s.ai-attar@tudelft.nl

Faculty of Applied Sciences
Lorentzweg 1
2628 CJ Delft