As medical science has advanced, physicians and patients have relied on increasingly sophisticated medical devices for diagnosis, treatment, and long term health care. Biomedical engineers are key players in the development, design, and continuing refinement of devices such as joint replacement prostheses, biosensors, imaging and pattern recognition, as well as advanced instruments for use in such domains as minimally invasive surgery and the diagnosis of movement disorders.

Programme
The TU Delft Master's Programme in Biomedical Engineering is a multidisciplinary programme which aims to provide you with both an understanding of biology and medical theory and with highly specialised technical training in such fields as electrical, physics, material and mechanical engineering.

You will take courses from three TU Delft faculties - Applied Sciences; Electrical Engineering, Mathematics and Computer Sciences; and Mechanical, Marine and Materials Engineering. The programme also benefits from the clinical input provided by Leiden University Medical Center, and Erasmus Medical Center in Rotterdam. You will learn how to develop conceptual models from a technical perspective and you will work in close collaboration with physicians, researchers and other healthcare professionals, including on site at the collaborating academic institutions.

The MSc programme in Biomedical Engineering is a two-year programme.

Tracks
The three tracks offered by the Master programme in Biomedical Engineering are: Neuromusculoskeletal Biomechanics, Medical Devices and Medical Physics.
First year
Courses 60 EC

<table>
<thead>
<tr>
<th>Track I</th>
<th>Track II</th>
<th>Track III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuromusculoskeletal Biomechanics</td>
<td>Medical Devices</td>
<td>Medical Physics</td>
</tr>
</tbody>
</table>

Obligatory courses all tracks (14 EC)

1. Anatomy & Physiology (only for students with technical background) (4 EC)
2. Medical Technology I (Diagnostic Devices) & Healthcare Systems (5 EC)
3. Ethics of Healthcare Technologies (5 EC)

First list of track-specific obligatory courses (24-25 EC)

1. Track I: Neuromusculoskeletal Biomechanics
 - Effect of series versus parallel electrical configuration on self-sensing in a structure of twisted and coiled polymer muscles
 - Osteogenic and antibacterial activity of strontium and silver containing additively manufactured titanium implants
 - Wireless power transfer and optogenetic stimulation of freely moving rodents
 - Puncturing chronic total occlusions using hydraulic pressure waves
 - MRI prostate cancer radiomics: assessment of effectiveness and perspectives
 - Inertial Sensor Motion Tracking: a method development and validation study on measurement of baseball pitching
 - Energy saving pneumatically actuated autonomous systems
 - Heartbeat detection using infrared thermometry in the ear

2. Track II: Medical Devices
 - Magnetic Resonance Imaging (MRI) prostate cancer radiomics: assessment of effectiveness and perspectives

3. Track III: Medical Physics
 - 3D printing of medical devices and instruments
 - Magnetic Resonance Imaging (MRI) prostate cancer radiomics: assessment of effectiveness and perspectives

Career prospects
Career opportunities for biomedical engineers are excellent. To develop the innovative technologies that drive the biomedical industry, it requires personnel with the unique combination of skills, knowledge and experience in biology, medicine and engineering that graduates of the MSc programme in Biomedical Engineering can offer. Graduates find employment in hospitals, private firms producing equipment, medical devices and instruments, and in research institutions.

visit tudelft.nl/msc/bme for a list of courses