Paul Scherrer Institut
Eberhard H. Lehmann, Pierre Boillat, A. Kaestner, P. Vontobel, P. Oberholzer

Neutron Imaging Methods for the Investigation of Energy Related Materials
Fuel Cells, Battery, Hydrogen Storage and Nuclear Fuel
10 years ago: a conference about nuclear energy would be expected

today: most talks related to alternative (renewable) energy research

however: there is a potential in neutron research for nuclear materials too …
Outline

1. Introduction

2. THE METOD OF NEUTRON IMAGING

3. FACILITIES AT PSI

4. APPLICATIONS IN THE ENERGY FIELD
 • *Electric Fuel Cell Research*
 • *Li-Ion Batteries*
 • *Hydrogen Storage*
 • *Nuclear Fuel Inspection*

5. Discussion

6. Conclusion & outlook
Introduction: the problems to be solved

• To provide non-destructive and non-invasive tools for material tests and performance optimization

• Neutrons have properties in this respect which can be used alternatively and complementarily to the more established X-ray methods

• As a guide line for neutron studies: heavy elements are transparent, light elements deliver relatively high contrast
Comparison N ↔ X (example: hard-disk drive)
Principle of neutron imaging

\[I = I_0 \cdot e^{-\Sigma \cdot d} \]

- \(I_0 \) = initial beam intensity
- \(I \) = beam intensity behind the sample
- \(d \) = sample thickness in beam direction
- \(\Sigma \) = attenuation coefficient of the material

\(\rightarrow \) quantification of the involved materials
Spallation neutron source SINQ @ PSI

- In operation since 1997
- Driven by 590 MeV protons on a Pb target
- Intensity about 1.2 mA, corresponding to 1 MW thermal power
- Installations for research with thermal and cold neutrons

Still the world’s strongest stationary spallation source
SINQ – Layout, Imaging Beam Lines
ICON-beam line @ SINQ

- Space for Selector or Chopper
- Micro-Tomography-Position
- Beam limiters
- Position for large objects
- Variable apertures 1 … 80 mm, Be filter
<table>
<thead>
<tr>
<th>ICON</th>
<th>NEUTRA</th>
<th>BOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>cold neutrons</td>
<td>thermal neutrons</td>
<td>very cold neutrons</td>
</tr>
<tr>
<td>higher contrast</td>
<td>higher penetration</td>
<td>high beam intensity</td>
</tr>
<tr>
<td>variable aperture, Bi-</td>
<td>more homogenous illumination for large</td>
<td>polarized neutrons</td>
</tr>
<tr>
<td>filter option</td>
<td>objects</td>
<td></td>
</tr>
<tr>
<td>two beam positions</td>
<td>two beam positions</td>
<td></td>
</tr>
<tr>
<td>micro-tomography-setup</td>
<td>two detector boxes</td>
<td>UNDER CONSTRUCTION</td>
</tr>
<tr>
<td>tilted detector option</td>
<td>X-TRA option (320 kV tube, high current)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for referencing</td>
<td></td>
</tr>
<tr>
<td>two detector boxes</td>
<td>option for the inspection of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>highly activated materials</td>
<td></td>
</tr>
<tr>
<td>turbine energy selector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fuel cell infra-structure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Detector options with CCDs

FOV and pixel size for the detector systems at PSI's neutron imaging facilities
Micro-Tomographie-Setup an ICON

Specifications
• FOV: 2.7cm * 2.7cm
• Pixel size: 13µm
• CCD with 2048*2048 pixels
• Scintillator 10 µm thick
• L/D>1000
Example for neutron micro-tomography

5 mm
APPLICATIONS IN THE ENERGY FIELD

- Polymer-Electrolyte-Membrane (PEM) fuel cell,
- Lithium-Ion batteries
- Hydrogen storage in several metallic structures
- Study of nuclear fuel and its cladding

→ Results for these topics ←
← approaches and offer to partners →
PEM Fuel Cell - Principle

\[\text{H}_2 + \text{O}_2 \rightarrow \text{H}_2\text{O} \]
The membrane needs humidification to provide proton conductivity.

Anode:
\[\text{H}_2 \rightarrow 2 \text{H}^+ + 2 \text{e}^- \]

Cathode:
\[\frac{1}{2} \text{O}_2 + 2 \text{H}^+ + 2 \text{e}^- \rightarrow \text{H}_2\text{O} \]

Condensed water can disturb the access of gaseous reactants.

Source: P. Boillat, Electrochemistry, PSI
Through-plane option

- High frame rate possible (~30 Hz), depending on beam intensity
- Spatial resolution ~0.2 mm only
- Behavior at cathode or anode not distinguished
In-Plane measurements: water inside the membrane

- High detector resolution required
- Thickness of the cell in beam direction limited by neutron transmission
- High beam collimation needed
- Less neutron flux \rightarrow lower frame rate
Differential Fuel Cell – for high resolution imaging

- Gas Diffusion Layer (GDL)
- Membrane with Electrode (MEA)
- Flow Field
- Gasket
- Neutron Beam

$I = 1 \text{ A/cm}^2$, $p = 2 \text{ bar abs.}$, $T = 70 \ ^\circ \text{C}$
Differential Fuel Cell – in reality

beam direction
In-Plane measurements; Detector improvement - Tilting

Beam → Cell → Detector → Radiogram

$d_{obj} = d_{det}$

Beam → Cell → Detector, tilted → Radiogram

d_{obj}

d_{det}
Resolution improvement - Results

Investigation of a 150µm wide absorber stripe

Source: P. Boillat, Electrochemistry, PSI
Cell performance and water management

Membrane

Gas diffusion layers (GDL)

Anode

(a)

Rib

Channel

Cathode

(b)

(c)

(d) 550

Dry

Excess water

Voltage [mV]

500

450

400

Average water content [a.u.]
current topics of Fuel Cell Research using Neutrons

- Simultaneous neutron imaging of 6 cells
- Start-up behavior of PEM-FC and operation under sub-zero conditions
2002 – 2008: Through-plane

100 µm pixel
200 µm FWHM
2008 – 2012: High resolution In-plane

2.35 μm pixel
< 10 μm FWHM
2012: In-plane, but with 6 cells!

6 μm pixel
25 μm FWHM
Motivation

2012: In-plane, with 6 cells ... but why?

- Efficient use of beam time
- Improved repeatability
 - Identical conditions for all cells
 - Study of design parameters
Testing different designs

2D

1D

μ-interdigitated
Motivation

- Testing different compression rates

![Comparison of compression rates at 60%, 30%, and 5%](image-url)
Motivation

➢ Testing different materials

MPL = Micro Porous Layer
Motivation

- Imaging

- Impedance spectroscopy

-Im(Z) -Im(Z) -Im(Z) -Im(Z)

Re(Z) Re(Z) Re(Z) Re(Z)
Motivation

- Imaging

Set-up

How?

- Printed circuit board
- Spring contacts
- Cooling gas
- Heating liquid
- Out (MFCs)
- In
- By-pass
- Out (MFCs)
- In
- By-pass
- Printed circuit board
Set-up

How?
Results

Influence of the MPL: voltage

T = 70°C, RH = 100%/100%
Results

Influence of the MPL: water distribution

- Temperature: T = 70°C
- Relative Humidity: RH = 100%/100%
- Current Density: i = 0.5 A/cm²

The graph shows the water content (% vol tot) across different positions in the membrane [µm] with and without MPL on both sides. The graph compares the water distribution for different scenarios:

- **No MPL**
- **MPL both sides**
- **MPL anode**
- **MPL cathode**
Mass transport losses...

... may originate from water accumulation in MEA region.
Neutron imaging of isothermal sub-zero degree Celsius cold-starts of a polymer electrolyte fuel cell (PEFC)
Motivation

Voltage

Current

Time

Δt_{work}

H_2O_2 \rightarrow H_2 \rightarrow O_2 \rightarrow H_2O
Procedure

- **RH**: 30% for 30 minutes.
- **T**: 25°C for 10 minutes, then drop to -10°C for 15 minutes.
- **U**: 0.9 V for 35 minutes, then reduce to 0.1 A/cm² for 20s.
- **i**: 2 to 117 minutes, then 15 minutes.
Isothermal Sub Zero Startup

Anode Cathode

Startup at -10°C, 0.2 A/cm²

Total time: 20 minutes
Results: Isothermal Sub Zero Startup

Startup at -10 °C, 0.2 A/cm²

- Anode
- Cathode
- Membrane & Catalyst
- GDL

Graph showing:
- Water content [% vol tot]
- Voltage [V]
- Current density [A/cm²]

Lines representing:
- Water in GDL
- Water in Membrane/CL
- Current density
- Voltage
Fuel Cell Research using Neutron Imaging

- Established as powerful non-invasive method
- Direct water quantification
- Through plane and in-plane observation possible
- Coupled with in-situ electrical scanning (voltage, current density)
- High flexibility in spatial and time resolution
Li-Ion battery research

- Li-Ion migration during charging/discharging processes visible with neutron imaging methods? (ongoing)

- Gas production during operation and its influence onto the cell performance

work done:

The migration process within Li-Ion batteries

might it be possible to visualize the transfer with neutrons?

Specific approach:

Li-6: tot. CS=944 barn
Li-7: tot. CS=1.1 barn

→ Doping of the agents
Li-Ion battery development and performance improvement

TEST DEVICE

1. Teflon bolts
2. Polypropylene sealing ring
3. Aluminum cell covers
4. Current collector plates
5. Electrodes
6. Gel-type electrolyte
7. Gas space

Data from:
Gas production in relation to the charging process

- lateral distribution of gas bubbles visible
- formation of growing gas channels
- PC (propylene carbonate) electrolytes show the evolution of large amounts of gas, resulting in an unfavorable distribution of the local current density and reduction of the cell charge capacity.
- GBL-based gel-type electrolytes show a usable electrochemical behavior and the evolution of only very small amounts of gas.
Hydrogen storage in metal hydrides

- Processes are reversibly
- For gas release high temperature required
- Efficiency still topic for investigations
<table>
<thead>
<tr>
<th></th>
<th>1s</th>
<th>2a</th>
<th>3b</th>
<th>4b</th>
<th>5b</th>
<th>6b</th>
<th>7b</th>
<th>8</th>
<th>1b</th>
<th>2b</th>
<th>3a</th>
<th>4a</th>
<th>5a</th>
<th>6a</th>
<th>7a</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>3.44</td>
<td>Be</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>3.30</td>
<td>Mg</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.09</td>
<td>Ca</td>
<td>0.08</td>
<td>Sc</td>
<td>0.20</td>
<td>Ti</td>
<td>0.60</td>
<td>V</td>
<td>0.72</td>
<td>Cr</td>
<td>0.54</td>
<td>Mn</td>
<td>1.21</td>
<td>Fe</td>
<td>1.19</td>
<td>Co</td>
</tr>
<tr>
<td>Rb</td>
<td>0.08</td>
<td>Sr</td>
<td>0.14</td>
<td>Y</td>
<td>0.27</td>
<td>Zr</td>
<td>0.29</td>
<td>Nb</td>
<td>0.40</td>
<td>Mo</td>
<td>0.52</td>
<td>Tc</td>
<td>1.76</td>
<td>Ru</td>
<td>0.58</td>
<td>Rh</td>
</tr>
<tr>
<td>Cs</td>
<td>0.29</td>
<td>Ba</td>
<td>0.07</td>
<td>La</td>
<td>0.52</td>
<td>Hf</td>
<td>4.99</td>
<td>Ta</td>
<td>1.49</td>
<td>W</td>
<td>1.47</td>
<td>Re</td>
<td>6.85</td>
<td>Os</td>
<td>2.24</td>
<td>Ir</td>
</tr>
<tr>
<td>Fr</td>
<td>0.34</td>
<td>Ac</td>
<td>0.41</td>
<td>Pr</td>
<td>1.87</td>
<td>Nd</td>
<td>1.87</td>
<td>Pm</td>
<td>5.72</td>
<td>Sm</td>
<td>171.47</td>
<td>Eu</td>
<td>94.58</td>
<td>Gd</td>
<td>1479.04</td>
<td>Tb</td>
</tr>
</tbody>
</table>

Legend

\[
\text{Attenuation coefficient [cm}^{-1}\text{]} = \frac{\sigma_{\text{total}} \times \text{sp.gr.}}{\text{at.wt.}} \times 0.6023
\]

Verification of the hydrogen accumulation

Simplified setup for non-invasive hydrogen determination

- in-situ determination of loading/reloading processes
- direct quantification of the hydrogen amount
- high spatial and time resolution
- 2D and also 3D investigations possible
Investigation of nuclear fuel

U-235 and U-238 can be distinguished easily:

\[
\text{tot. CS (U-235)} = 700 \text{ barn} \\
\text{tot. CS (U238)} = 12.17 \text{ barn}
\]

- non-invasive determination of the enrichment
- observation of the pellet integrity
- status of the fuel burnup
Investigation of nuclear fuel cladding

• In the long-term operation of NPPs a hydrogen accumulation in the Zr based cladding can happen.

• A final consequence of this hydrate clustering might be cladding failure and fission product release.

• Neutron imaging is a useful tool for the visualization and quantification of the amount of locally fixed hydrogen.
Investigation of nuclear fuel and its cladding

broken fuel rod (caused by H load?)

special setup (NEURAP) required
Hydrogen Quantification in the cladding

![Graph showing ppm(H) vs. Position x (mm)]
Conclusions

• It has been shown that neutron imaging can contribute to analyze energy relevant samples and to optimize related processes

• High resolution in time and space is provided together with the specific contrast in the neutron transmission

• The quantitative data obtained from the images can be compared to model considerations

• Further progress will be obtained by energy-selective imaging, phases contrast imaging and the use of polarized neutrons
The facilities at PSI are prepared to host further such studies on demand