The Space Flight Master track is offered to graduates that are looking for an academic program that prepares them well for an exciting career in the international space sector. The master curriculum covers the full life cycle of space missions, from conceptual design to implementation and utilization. The track allows students to specialize along two different profiles: Space Engineering and Space Exploration.

Profiles

Space Engineering

Space Engineering is the field of engineering concerned with the end-to-end engineering of space systems and system components. Areas of interest include the engineering of advanced/innovative space missions, space vehicles and instruments, sensors, actuators, mechanisms, and thrusters. In Space Engineering applying state-of-the-art technologies and providing innovative solutions is daily business. End-to-end engineering generally covers the full product cycle from conceptualization, design, development and operations, i.e. "from the cradle to the grave".

In the Space Engineering profile you will learn how to engineer complex space systems on their constituting elements, subsystems, instruments and components using a systematic approach. You will gain expertise on every phase of a spacecraft system development including design, development, integration, verification/testing and operations. You will also learn about management aspects of engineering including scheduling and planning, and about working...
in multi-disciplinary design teams to formulate spacecraft system solutions using a concurrent engineering approach. This will enable you to apply your gained knowledge also to other complex technical systems outside of Aerospace Engineering.

Space Exploration

The profile addresses many aspects of satellite missions: from concept to applications, and from launch to end-of-life. The Space Exploration profile aims at delivering skilled space mission engineers and scientists. You will learn about techniques and methods to track, predict, optimize and very precisely compute satellite trajectories, both for spacecraft around the Earth and planetary missions in our Solar System. You will also learn about methods and tools to exploit satellites for a wide range of scientific and societally relevant issues and applications, including monitoring all kinds of aspects that are related to Earth’s climate such as sea level and the ice caps, methods for mitigating the growing problem of space debris and retrieving properties of other celestial bodies in our Solar System including the search for extra-terrestrial habitats. Because of its generally theoretical nature, this profile is quite challenging but might pave the way into an academic career.

Career prospects

The prospects of finding a job with an MSc degree in aerospace engineering and a specialization “Space Flight” are typically very good. Many of our graduates find work in leading aerospace and space industries and institutes (Dutch and international). This includes companies and institutions such as Airbus Defence and Space Netherlands, NLR, TNO, SRON, ISIS, ESA, NASA and many others. Other graduates remain in the academic world by doing a PhD, begin their own firm, or find employment in other sectors (technical advisory companies, energy companies, banking, etcetera). The increasing dependence of business on systems engineering technologies continues to increase the demand for highly qualified aerospace engineers.

Career perspective

- **4th** QS World Ranking (faculty)
- **45%** International students
- **79%** Finds a (paid) job within 3 months

www.tudelft.nl/msc/ae