Functional composites for sensor applications

Background

Piezoelectricity

Pyroelectricity

Brittle, heavy ceramic sensors

Flexible, lightweight composite sensors

Experiments

Electrode

Particles

Polymer

Dielectrophoretic structuring

Macrostructure of the composite during DEP

Simulations

Structured polymer-ceramic composites for piezoelectric sensing applications outperform the conventional ceramics. The pyroelectric sensitivity of the composites enhances by DEP structuring.

Test results

Conclusions

Lead titanate-epoxy sensors prepared by dielectrophoresis show better piezoelectric and pyroelectric sensitivity compared to random composites. Significant improvement at low volume fractions leads to higher flexibility of the sensors. Lead titanate-PEO composites show enhanced pyroelectric properties compared to epoxy composites owing to the higher electrical conductivity of the polymer matrix.

Publications