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Abstract—We address the problem of estimating the neighbor-
hood cardinality of nodes in dynamic wireless networks. Different
from previous studies, we consider networks with high densities
(a hundred neighbors per node) and where all nodes estimate
cardinality concurrently. Performing concurrent estimations on
dense mobile networks is hard; we need estimators that are
not only accurate, but also fast, asynchronous (due to mobility)
and lightweight (due to concurrency and high density). To cope
with these requirements, we propose Estreme, a neighborhood
cardinality estimator with extremely low overhead that leverages
the rendezvous time of low-power medium access control (MAC)
protocols. We implemented Estreme on the Contiki OS and
show a significant improvement over the state-of-the-art. With
Estreme, 100 nodes can concurrently estimate their neighborhood
cardinality with an error of ≈10%. State-of-the-art solutions
provide a similar accuracy, but on networks consisting of a few
tens of nodes and where only a fraction of nodes estimate the
cardinality concurrently.

Keywords—Wireless Communications; Modeling; Performance
Evaluation.

I. INTRODUCTION

Knowing the neighborhood cardinality in wireless networks
is an essential building block of many adaptive algorithms,
such as resource allocation [1] and random-access control [2].
Cardinality estimation is also a valuable tool on itself. It can be
used to monitor the surrounding environment, transforming the
radio device into a smart sensor [3]. Our work is indeed part
of a larger project related to public safety. The project’s goal
is to provide coin-size devices to attendees in open-air large-
scale festivals and issue alerts when the crowd density crosses
dangerous thresholds. In this type of applications, all or most
of the devices need to periodically estimate their surrounding
density, which can reach levels of hundreds of nodes.

Neighborhood cardinality estimation is a broad and active
research area, but for the purposes of our work, we are inter-
ested in studies that perform empirical evaluations on dynamic
networks, i.e. networks with frequent topology changes due to
fluctuations in link quality and node movement. Within this
scope, the state-of-the-art achieves an accuracy between 3%
and 35% for 25 smartphones, relying on audio signals [4].
Other studies, using bluetooth signals in smartphones [3] and
radio signals in sensor nodes [5], achieve comparable results
for similar settings. Nevertheless, only a fraction of the nodes
perform the estimation process.
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We advance the state-of-the-art in two ways. First, we
move from scales of a few tens of neighboring nodes to one
hundred nodes. Second, we allow all nodes to perform the
estimation concurrently. Solving this novel estimation problem
is challenging. Network dynamics require estimations that are
fast and asynchronous. These latter characteristics limit the
number of samples (i.e., information) that can be collected,
which in turn decreases accuracy. On the other hand, higher
density and concurrency pose an extra burden on the sampling
process and necessitate an efficient use of bandwidth.

To cope with these challenges we propose Estreme, a
low-overhead cardinality estimator that is robust to mobility
and supports multiple estimators running simultaneously in an
asynchronous manner. The key idea behind Estreme is simple:
in networks where all nodes perform periodic but random
events within a given period, the time difference between two
consecutive events (rendezvous time) captures the density of
the neighborhood. The shorter the rendezvous time, the higher
the density, and vice-versa.

Contributions. Our main contributions are:

(i) In Section II, we model the rendezvous time using order
statistics and derive a neighborhood cardinality estimator. The
model permits us to (a) provide four rules that are necessary
and sufficient for using Estreme in a wide family of communi-
cation protocols, (b) gain insights into the performance of the
estimator and (c) derive bounds for the estimation error.

(ii) In Section III, we implement Estreme on top of a low-
power listening protocol. Even though Estreme is conceptually
simple, implementing it on real nodes rises a number of
challenges: rendezvousing with the right events, measuring
the rendezvous time accurately and exploiting spatial/temporal
correlations in the sampling process. We thoroughly analyze
these challenges and provide viable solutions.

(iii) In Section IV, we extensively evaluate Estreme on a
testbed consisting of 100 wireless nodes performing concurrent
estimations. Our implementation achieves an estimation error
of ≈ 10% with an overhead of just 4 bytes per estimation and
a duty cycle of ≈ 3%. Moreover, Estreme provides a good
trade-off between agility and precision. For example, when
the neighborhood size changes abruptly from 30 to 60 nodes,
the estimated cardinality of nodes converges within one minute
to the 10% error range.



II. ESTREME

The ideas presented in this section form the basis of our
approach for estimating the neighborhood cardinality. First,
we derive an estimator based on order statistics and discuss its
applicability to communication protocols (Section II-A). We
then analyze the impact of timing errors on the estimation
accuracy (Section II-B).

A. Mechanism

The neighborhood set Vu of a node u in a wireless network
consists of all nodes v in the radio vicinity of u. Our objective
is to compute nu = |Vu| i.e., its cardinality. In the following,
we use n instead of nu when u becomes implicit.

Cardinality estimator. We assume that, within a given period
tw, all nodes in the network perform an event in a random and
desynchronized manner, as in Figure 1. Considering a random
point in time, the time sequence of the subsequent events can
be modeled as a set of independent random variables following
a uniform distribution (X1 . . . Xn). This random point in time
represents the moment when a node, called initiator, wishes to
estimate the cardinality of its neighborhood. The rendezvous
time with the first k neighbors (events) captures the cardinality.
Intuitively, the longer it takes to rendezvous, the lower the
cardinality (because the distribution of random events during
tw is sparser).

The rendezvous time Tr(k) with the first k neighbors is
a random variable and can be modeled using order statistics.
The density function of Tr(k) is known to follow the beta
distribution [6]

Tr(k) ∼ Beta(α, β), (1)

and in our scenario α = k and β = n + 1 − k. Considering
the period tw, the expected value of the rendezvous time, i.e.,
the expected time it takes to observe k events is

E[Tr(k)] = tw
α

α+ β
= tw

k

n+ 1
. (2)

Inverting the expectation, we obtain a simple-to-compute esti-
mator for the neighborhood cardinality n based on the average
of the observed rendezvous times t̄r.

n̂ = tw
k

t̄r
− 1. (3)

In our work we consider k = 1, that is, we estimate the
cardinality by using the average rendezvous time with the
first event only. As we will describe later, k = 1 is chosen
because it minimizes the amount of bandwidth used to collect
a sample. As mentioned before, an efficient use of bandwidth is
a central requirement to cope with a high number of concurrent
estimations.

It is important to note that in theory, for k = 1 the
expectation of the estimator diverges [7], because as n→∞,
tr → 0 and n̂→∞. In practice, tr remains positive. However,
for very large neighborhoods, as n → ∞, Estreme could use
k ≥ 2. For these values of k the expectation of the estimator
becomes n/(k − 1) [8].
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Fig. 1. Modeling the rendezvous times with the first k neighbors using
the Beta random variable Tr(k). The random variables X1 . . . Xn model the
wake-up times of nodes.

Applicability of Estreme. Because of its simplicity, the
proposed estimator is applicable to any network protocol that
abides to three requirements: font=

R1. Periodically (every tw), nodes generate indepen-
dent and random events.

R2. The event of a node is observable by all neighbors.
R3. Nodes can accurately measure inter-event periods.

Requirement 1 guarantees that, given a random moment in
time, we can model the occurrence of the first event using
a uniform random variable. Requirement 2 ensures that an
initiator node appropriately identifies the first k events. That is,
it does not mistake a later event for an earlier one. For example,
due to collisions, earlier events can be lost and Estreme would
underestimate the cardinality. Requirement 3 ensures that the
rendezvous time is measured accurately. Otherwise an overes-
timation (shorter rendezvous than factual) or underestimation
(longer rendezvous than factual) of the cardinality would occur.

B. Timing inaccuracies

As we will observe in the next section, measuring accu-
rately the rendezvous time is challenging because several de-
lays are introduced. Some of these delays can be measured and
overcome, but others are difficult to track, such as computation
and transmission delays. Analyzing the effects of these delays
is central to understanding the performance of Estreme in real
scenarios. In this section we derive a bound for the cardinality
error caused by a positive delay ε in the rendezvous time.

Proposition 1. Given a timing error ε in the rendezvous time
tr, the expected cardinality error is

E[en] =
n̂ε − n
n

= Θ

(
− ρ

1 + ρ

)
,

where ρ = ε(n + 1)/tw , and n̂ε is the expected value of the
estimated cardinality considering ε.

Proof: The proof consists of two steps. First, we derive
n̂ε based on an expected rendezvous time delayed by ε. We
then propose a bound on the resulting error en and show that it
is tight. Let us start with the derivation of en. Substituting the
expression of n̂ε derived from (2) and (3) into the definition
of E[en], we obtain



E[en] = − ε(n+ 1)2

n (tw + ε(n+ 1))
. (4)

Observe that for ε > 0, the above is negative; any positive
delay causes the underestimation of n. Unfortunately, even
though exact, Equation (4) is not intuitive. It is easy to see
that, the simpler and more insightful expression

Φ = − ε(n+ 1)2

(n+ 1) (tw + ε(n+ 1))

= − ε(n+ 1)/tw
1 + ε(n+ 1)/tw

(5)

tightly bounds E[en]. It is sufficient to show that, for each n,
positive k1, k2 exist such that

k1Φ ≤ E[en] ≤ k2Φ, for all n ≥ 1.

Indeed, the above inequality holds for

k1 ≤ (n+ 1)/n and k2 ≥ (n+ 1)/n.

Setting ρ = ε(n+ 1)/tw in Equation (5) concludes our proof.

Proposition 1 leads to two observations for practical im-
plementations of Estreme. First, given a fixed measurement
error, longer periods tw are preferable in terms of estimation
error. As ρ → 0 the estimation error tends to 0−. This can
be caused both by ε being very small (this is obvious, since a
small measurement error implies small estimation errors), but
also by long periods tw and small neighborhood sizes. While
we cannot choose the number of neighbors, we should prefer
longer periods tw to shorter ones. Second, to run Estreme,
a platform should be able to measure the rendezvous time
with sub-millisecond accuracy. If we apply the Proposition to
a neighborhood of 100 nodes with a period tw = 1000ms, the
estimation error introduced by a measurement delay ε = 1ms
is

Θ(− 0.101

1 + 0.101
= −0.09).

That is, with a measurement error of just 1 ms, the estimation
error is 9%. Obtaining an accurate estimation of the rendezvous
time at sub-millisecond accuracy is therefore central for the
correct operation of Estreme.

III. ESTREME IN LPL

Estreme is a general framework that can be implemented
over many communication protocols. In our work, we build
Estreme on top of a generic low-power listening MAC pro-
tocol in Contiki OS (X-MAC [9]). We first describe a Naive
implementation of Estreme on LPL and highlight its limitations
(Section III-A). Then, we analyze these limitations and provide
solutions for them (Sections III-B, III-C, and III-D).

A. Naive implementation

In LPL, nodes wake up periodically and with a fixed
frequency tw. When a node, called initiator, wants to com-
municate (see Figure 2(a)), it sends a strobe of beacons (B)
until the intended neighbor (node 2) wakes up. The wake-up of
nodes is the observable event required by Estreme. To adhere
to the uniform and random distribution of requirement 1, we
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(a) low-power listening mechanism (LPL).
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(b) Estreme mechanism applied to LPL unicast

Fig. 2. Estreme mechanism applied to LPL

slightly modified the code. Instead of letting nodes wake up de-
terministically at every tw, we introduce a uniform and random
delay in the range [−tw/2, tw/2]. With this modification, the
probability density function of the rendezvous times adheres
to the Beta distribution required by Estreme to perform the
estimation. Note, however, that the random delay introduced
into the LPL’s wake-up times can lead to jitter, which may
cause compatibility issues with other protocol designs.

Anycast, unicast, broadcast. LPL has two basic communi-
cation primitives: unicast and broadcast. With broadcast, the
strobe of beacons lasts for the entire duration of the period
tw. With unicast, the strobe of beacons ends as soon as the
intended receiver is found.

With unicast and broadcast, the rendezvous time with
the first neighbor to wake up can be obtained via a slight
modification of the LPL beaconing mechanism. During the
strobe of beacons, the initiator announces that the first wake-
up has not yet been observed by setting a flag in its beacons
(white packets in Figure 2(b)). When a neighbor receives a
flagged beacon (node 3), it sends an acknowledgement (A1).
After receiving “A1”, the initiator clears the flag and continues
its strobe normally until the intended destination is found (in
the case of unicast), or until the wake-up period expires (in
the case of broadcast).

We implemented a third primitive: anycast, which commu-
nicates opportunistically with the first neighbor to wake up.
Anycast has been gaining significant attention in the sensor
network community due to its ability to reduce the delay and
to increase the throughput of networks [10], [11].

From now on, our implementation focuses only on the any-
cast primitive for two reasons. First, anycast natively supports
Estreme’s requirements without posing any additional over-
head (no need to strobe beacons after the first event is found).
Second, anycast has been shown to be particularly suitable
for dense, mobile networks [12]. Thanks to its very efficient
use of bandwidth (much shorter rendezvous times compared
to unicast and broadcast), Estreme is able to concurrently and
periodically estimate neighborhood cardinalities of hundreds
of nodes.

Implementation issues. At first glance, the rendezvous time is
simple to measure: the initiator starts a timer before sending
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Fig. 3. Naive implementation of Estreme compared to the Beta model.

its first beacon (B1) and stops the timer upon receiving the
acknowledgement (A1). We evaluated this Naive method on
our testbed for various neighborhood sizes, from 10 to 100.
The cardinality estimation is based on the mean rendezvous
time (t̄r) of the last 50 samples observed by the initiator. The
initiator sampled its neighborhood at a rate of 1 Hz.

Figure 3(a) compares the mean rendezvous times with (i)
our analytical model ( E[Tr] according to Equation 2), and (ii)
Monte Carlo simulations performed in Matlab, which capture
an ideal networking environment. Note that for all neigh-
borhood cardinalities, Estreme over-measures the rendezvous
time. Figure 3(b) shows that, as a consequence, the estimation
error of the neighborhood cardinality (black bars) is significant,
between 10% and 20%. Based on the maximum difference (ε)
between the Naive measurements and the expected rendezvous
time E[Tr] (Proposition 1), we observe that the estimation error
could reach values between 20% and 40%.

The problem with the “Naive” implementation is that
it does not adhere to Estreme’s 2nd and 3rd requirements.
Sometimes an initiator misses the first event, and mistakes
subsequent events as being the first (non-compliance with
requirement 2), and the calculation of the rendezvous time
includes delays that are not part of the rendezvous itself
(non-compliance with requirement 3). In the next sections we
describe and solve these two problems, and explain a method
to accelerate the estimation convergence of Estreme.

B. Correct observations

Since Estreme’s estimations are based on the wakeup
sequence of nodes, it is essential that such observations are
correct. But collisions can affect this requirement, see Figure 4.
If two or more neighbors wake up between two consecutive
beacons, a collision will occur. Denoting tb as the inter-beacon
interval, the collision probability is

P (collision) =
∑
j

n∑
i=2

P

(
first i nodes wake up at

the jth interval

)

=

btw/tbc∑
j=1

n∑
i=2

(
n

i

)(
tb
tw

)i(
1− tb

tw
j

)n−i
where tb/tw is the probability that a node wakes up at each
inter-beacon duration, and 1− (tb/tw)j is the probability that
a node wakes up after the jth interval. The likelihood of a
collision is not high. For example, if n is 10, 50 and 100, the
collision probability is 0.02, 0.11 and 0.22, respectively. Note
that, even though this probability captures the collision of any
number of nodes, most of the probability mass is concentrated
on the case when only two nodes collide.

To reduce the chances of missing the first event(s), Estreme
implements the following conflict resolution mechanism: if a
node detects that its acknowledgment is lost (by receiving the
beacon again), the node will retransmit its acknowledgement
with probability p and go back to sleep with probability (1−p).
Denoting nc ≥ 2 as the number of colliding nodes, the conflict
resolution mechanism leads to three outcomes:

(i) starvation, with probability (1 − p)nc , all nodes go to
sleep and the first event(s) is lost;

(ii) completion, with probability nc p (1−p)nc−1, only one
node remains awake and sends successfully the acknowledge-
ment;

(iii) contention, more than one node remain awake and the
contention process restarts with those nodes, with probability
1− (1− p+ nc p)(1− p)nc−1.

Since we want to maximize the probability of completions,

∂

∂p
nc p (1− p)nc−1 = 0 =⇒ p =

1

nc
. (6)

In a real scenario however Estreme will not know the
number of contending nodes. In our implementation we settle
for p = 0.5, because the higher p, the lower the probability
of starvation, but according to Equation 6, p ≤ 0.5. As an
example, if n = 100 the probability that exactly two nodes
collide and reach starvation is P (collision)P (starvation) =
0.19× 0.3 = 0.06.

To avoid the (unlikely) possibility of infinite contentions,
nodes will back off and go to sleep after a maximum number
of unsuccessfully retransmissions.

Note that this conflict resolution mechanism introduces a
delay in the measurements of the rendezvous time that badly
affects Estreme’s accuracy. In the next section, we provide a
comprehensive solution to overcome not only this delay but
many others.

C. Accurate measurements

Encountering the first node that wakes up is a necessary,
but not sufficient, step to properly estimate the neighborhood
cardinality. The rendezvous time of nodes needs to be measured
accurately.
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Fig. 4. Delays of the rendezvous measure.

Overcoming delays. In principle, the measuring of the ren-
dezvous time should stop at the moment when the first neigh-
bor wakes up. But, as Figure 4 shows, the Naive mechanism
includes different kinds of delays; namely, collisions (∆3), the
time required to transmit the radio packets (∆2, ∆4), and the
listening time between the actual wake-up and the moment
when the beacon is sent (∆1). This initial listening period ∆1
is a typical feature of LPL protocols such as X-MAC [9] and
can be as long as the inter-beacon interval tb.

To obtain an accurate measurement, we need to subtract
these delays from the naive measurements. In our implemen-
tation, this is done through the receiver (node 3), by starting
a timer once the receiver wakes up and piggybacking the
elapsed time on the acknowledgments (∆1 + ∆2 + ∆3).
Assuming a fixed bit rate and a fixed acknowledgement size,
both reasonable assumptions, ∆4 can be computed off-line as a
constant and be systematically subtracted by the initiator after
the acknowledgement is received. In our case ∆4 = 1.1 ms.

Accurate timing in Contiki OS. In Contiki, the clock library
allows measurements with a maximum precision of 2.83 ms.
This coarse-grained measure is not suitable for our estima-
tion purposes. To ensure the maximum possible accuracy,
we measured the rendezvous times using Contiki’s real-time
module (rtimer). Its precision depends on the processor’s clock
frequency (32 KHz in our devices) and allows to measure time-
ranges with sub-millisecond accuracy.

D. Improving the estimation process

As any other estimator based on order statistics, Estreme
is bound to the law of large numbers: the larger the number
of samples, the closer the mean gets to the expected value
and the more accurate the estimation. Unfortunately, in mobile
networks nodes cannot collect many samples because they only
have a limited amount of time to capture the current status of
their neighborhoods. The central question is hence, how can
we facilitate a fast gathering of samples? Estreme’s design
tackles this problem in the temporal (T-Estreme) and spatial
(S-Estreme) domains.

Averaging samples in time. Intuitively, given a certain period
T , we would like nodes to gather as many samples as possible
during that period. The key characteristic to achieve this goal
is an efficient use of bandwidth, that is, to spend as little
time as possible gathering each sample. By using anycast,
Estreme reduces the use of bandwidth to the minimum time
required to observe an event. To process these samples, T-
Estreme utilizes a simple moving window average (MWA)
filter, where the last w samples of the rendezvous time are
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Fig. 5. Relation between the topology of the testbed (bottom) and neigh-
borhood cardinalities (top). For specific experiments, only the results from a
representative node (in black) are shown.

averaged to estimate the cardinality. We tried other robust
statistical methods based on the median and on alpha-trimmer
filters, but there was not much difference with regards to MWA
(because requirements 2 and 3 already remove most outliers).
Like most MWA estimations, the tradeoff in the time domain
is between accuracy and adaptability: the bigger w, the more
time it takes to adapt to changes in cardinality.

Averaging samples in space and time. Different from most
cardinality estimators in the literature, Estreme is designed
from inception to allow all nodes to perform concurrent
estimations. This characteristic is not only good because some
practical applications require it, but perhaps more importantly
because it can quadratically increase the convergence of the es-
timation. In S-Estreme, besides sending the delay information
described in Section III-C, a receiver also sends the average
of its own time window. Every node is hence able to process
w2 samples in the same time required to locally collect w
samples. Note that in S-Estreme, it is preferable to choose w
based on the expected cardinality of the neighborhood n. With
w > n, some nodes’ samples will be counted multiple times.
With w < n, on the other hand, only part of the neighbors’
samples will be taken into account by the estimator. While
in our experiments w is kept constant, it is also possible to
dynamically adapt w’s size based on the cardinality estimation
provided by T-Estreme. It is important to highlight that while in
most cases S-Estreme will significantly improve the estimation
process, in case of drastic changes in network density, errors
can be introduced due to the spatial smoothing that is inherent
to S-Estreme. This phenomenon is analyzed in Section IV.

IV. EVALUATION

To evaluate Estreme, we ran an exhaustive set of experi-
ments on a testbed consisting of 100 sensor nodes equipped
with an MSP430 processor and a CC1101 radio. The testbed
is deployed in the ceiling of our offices and covers an entire
floor of the building. As the testbed was operated throughout
the week, Estreme was subject to all kinds of environmental
conditions (e.g., human activity during office hours and tem-
perature swings during the weekend) inducing quite a variety
of link dynamics, see [13].

To test network dynamics in a more controlled manner, we
follow a twofold approach: (i) we systematically turn on/off
various nodes in the network, and (ii) we provide a few people
with nodes and have them walk around our floor and building
to test transitions between areas with different node densities.



TABLE I. DEFAULT PARAMETER SETTINGS.

Symbol Parameter Value

tw wake-up period 1 second
ts sampling period 1 second
w window size 50 samples
n network size 100 nodes

Ground truth: In testbed experiments, it is difficult to define
the ground truth of the neighborhood cardinality. This occurs
because the quality of links is highly variable, and cardinality
changes significantly over time. This high variability is not
particular to our testbed. In [14], the authors report that in the
Twist testbed, the cardinality of some nodes oscillate between
12 and 17 in periods of 30 minutes.

For each experiment, we compute the ground truth cardi-
nality of a node as the number of neighbors that have been
observed at least once during the duration of an experimental
run. A node is observed if it successfully exchanges at least one
acknowledgement with the corresponding initiator. Note that
the ground truth cardinality is an upper bound that is seldom
reached. The fact that a node is observed during a period tw
does not imply that it will be observed in the next period(s).
Hence, all the estimation errors reported in this section are
worst case errors.

Figure 5 shows the network topology (bottom part) together
with the neighborhood cardinality (upper part) of each node in
a typical experiment. Due to the shape of the building (narrow
and long), when the maximum power is used (+10dBm), the
central nodes communicate with most of the network, while the
nodes on the two far-ends reach approximately half of the other
nodes. This setup creates a network with a minimum diameter
of 2 and offers a wide range of cardinalities, approximately
from 35 to 85 neighbors. These network cardinalities allow
us to understand the behavior of Estreme in case of un-even
densities. Also, to provide a more accurate comparison of
different methods, in some cases we use a representative node
with low cardinality variability. This representative node is
marked black in Figure 5.

Metrics and parameters. To evaluate the accuracy of Es-
treme, we computed the relative error of the estimations as
|(n̂− n)/n|, where n̂ is the estimated neighborhood size and
n is the “ground truth” neighborhood cardinality. With regards
to the parameters, unless stated otherwise, our experiments use
the default settings listed in Table I.

Window size exploration. We evaluated the performance of
T-Estreme with different window sizes (from 10 to 100) and
different network sizes (10, 50,and 100 nodes). Figure 6(a)
shows the results for a central node (the black node in Figure 5
in the full testbed (100 nodes)). T-Estreme reaches a plateau
at w = 50. For n = 10 and n = 50 (results not shown) we
obtained similar results. Since bigger windows will reduce the
estimator’s agility to adapt to changes in cardinality, we chose
w = 50 as the default value. As we will show later, the reason
why w = 50 holds for all n is a natural consequence of the
fact that the rendezvous samples follow a gaussian distribution
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(a) Exploring different window sizes (w) for T-Estreme
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(b) Exploring different window sizes (w) for S-Estreme.

Fig. 6. Exploring the error and variance of Estreme for different sizes of the
sampling windows.

for all n. When both time and spatial information is taken into
account, the cardinality can be estimated as follows:

n̂ = n̂T α+ n̂S (1− α),

where n̂T is the cardinality estimated by T-Estreme, i.e.
considering only the node’s own samples, and n̂S is the
cardinality estimated by S-Estreme, i.e. considering only the
node’s neighbors averages. In our work, we only report the
extremes. When T-Estreme is used α = 1, when S-Estreme is
used α = 0. Clearly, both estimations, temporal and spatial,
can be combined by fine-tuning α according to the needs of
the application. Figure 6(b) shows the results for S-Estreme.
Due to the gains in spatial correlation, S-Estreme with w = 10
provides similar results to T-Estreme with w = 50.

Note that for network sizes beyond 70, the performance of
S-Estreme decreases. This phenomena is due to the smoothing
behavior caused by spatial averaging and it is evaluated in
more detail later in this section.

Comparing with the state of the art: To evaluate the
performance of Estreme, we implemented a baseline estimator
combining the ideas of three studies [5], [15], [16]. The
specific difference of Estreme with each one of these studies is
described in the related work section (Section V). The baseline
estimator works as follows. The initiator broadcasts a request
and the subsequent time is divided into 10 time slots. At each
slot m, nodes jam the channel with probability 1

2m . The idea
of jamming the channel is taken from [5]. Sending raw radio
signal strengths (jamming), instead of sending packets, permits
estimations in the order of a few ms (like Estreme). The idea
of using time slots is borrowed from [16]. This time-slotted
method permits coarse-grained but fast estimations of large
cardinalities (which is also the focus of Estreme). Note that
the baseline method requires all nodes to be awake at the
moment of the estimation, while our method is asynchronous
and requires only two active nodes at a time.
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Fig. 7. Estreme’s relative error compared to the baseline.

A. Results

This section tackles two key aspects of Estreme: (i) the
ability to provide accurate cardinality estimations for large
neighborhood sizes while performing concurrent estimations,
and (ii) the agility to adjust to network dynamics.

Insight 1: In the temporal domain, T-Estreme provides an
accuracy that is similar to those of current solutions for low
cardinalities, but at high cardinalities the performance of T-
Estreme is many times better. Figure 7 depicts the accuracy
for various neighborhood sizes and various methods. For each
tuple <method, neighborhood size>, the experiment run for
an hour. For T-Estreme, S-Estreme and Naive, the estimation
process runs concurrently on all nodes. For Baseline, the
estimation runs only on the representative node (the black node
in Figure 5), because running Baseline on all nodes requires
synchronizing their requests, otherwise collisions occur. At
low cardinalities (under 40), there is no clear gain for T-
Estreme. Even further, while Baseline takes ≈10 ms for each
estimation, T-Estreme takes on average 1000/n ms, e.g. 100
ms for 10 nodes. Under these conditions, Baseline would have
sufficient bandwidth to perform concurrent communications
as well (in spite of requiring an extra synchronization step).
At higher cardinalities however, the accuracy of T-Estreme
remains around 10%, while Baseline’s performance deterio-
rates significantly. At n = 100, Baseline and Estreme spend a
similar amount of time on each estimation. The reason for the
poor performance of Baseline is its coarse-grained logarithmic
approach. The estimation could be made more accurate by
following a linear approach, as in [5], but this would require
a high level of synchronization and longer times, which may
not be permissible in dynamic settings.

An important characteristic of T-Estreme is that its accu-
racy remains rather stable for various cardinalities, between
10% and 15%, and the error bound validates this trend, see
Figure 8(a) . None of the other estimators shown in Figure 7
share this characteristic. Intuitively the error should increase
as n increases because 1 ms of error at n = 10 should
matter less than the same error at n = 100. This rather
stable behavior occurs because when n increases, not only
the expected rendezvous time decreases linearly but so does
the range of errors, see Figure 8(b). These trends cancel each
other out. At this point it is also important to notice that the
distribution of the rendezvous samples follows a Gaussian-like
distribution. As explained before, it is due to this reason that
w = 50 is a good window size for all n, because 50 random
instances allow (in probability) sampling of most of the mass
(range) of a Gaussian.

10 15 20 30 40 50 60 80 1000

0.2

0.4

neighborhood cardinality

re
la

tiv
e 

er
ro

r

 

 

Bound T−Estreme

0
200 10 15 20

0
200 30 40 50

−40 0 400
200 60

−40 0 40
80

−40 0 40
100

error [ms] error [ms] error [ms]
Fig. 8. Estimation accuracy (averaged) of T-Estreme across different
cardinalities (top) with underlying distributions at the node level (below).

Insight 2: In the spatial domain, S-Estreme outperforms
current solutions at low and high cardinalities, but in sce-
narios with un-even deployments the estimation accuracy is
compromised due to spatial averaging effects. The ability of
S-Estreme to collect data in a quadratic manner allows for
a remarkable accuracy in a short period of time. Figure 7
shows that for most cardinalities S-Estreme has an error under
5%. The main exception occurs at n = 100, and it is due
to the spatial averaging of un-even densities. Figures 9(a)
and (b) capture the spatial averaging effect. In T-Estreme,
each node has a precise view of its own neighborhood, as
shown by the accurate mapping between the individual node
estimations and the ground truth (Figure 9(a)). In S-Estreme
however, by averaging the views of its neighbors, a node
with a low cardinality –with regards to its neighbors– will
overestimate its density, and vice versa (Figure 9(b)). Recall
that we are showing the extremes of the parameter α (0 and
1), an intermediate α can be used to balance the benefits of T-
Estreme and S-Estreme. It is also important to highlight that,
while in principle spatial correlations can be applied to any
estimator that exchanges packets with its neighbors, in mobile
scenarios this spatial correlation requires a very efficient use
of bandwidth (to be fast and to allow concurrency), which is
one of the key characteristics of Estreme.

Insight 3: Under network dynamics, Estreme adapts to sudden
cardinality changes in a few minutes. We run a series of
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(a) T-Estreme in a static scenario with un-even cardinalities.
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(b) S-Estreme in a static scenario with un-even cardinalities.
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(c) T-Estreme with cardinality that grows over time (30 nodes every 30 minutes).
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(d) S-Estreme with cardinality that grows over time (30 nodes / 30 minutes).

Fig. 9. Estreme estimations in networks with spatial (top) and temporal (bottom) variations in neighborhood cardinality.

90-minute experiments in which the neighborhood cardinality
grows. Starting from 30 nodes, every 30 minutes, 30 nodes
are added. Figure 9(c) shows the estimations of the repre-
sentative node for T-Estreme. With twice the window size
w : 50 → 100, the estimator has a lower variance (more
accurate), but it takes three times longer (five minutes) to adapt
to the change in the neighborhood cardinality (zoom-in on the
top left corner of Figure 9(c)).

S-Estreme, on the other hand, achieves a more accurate and
faster convergence with w = 50, see Figure 9(d). In less than
one minute it is able to adapt to the new cardinality. On the
last jump however (n : 60→ 90), S-Estreme suffers from the
spatial averaging effect: the representative node starts receiving
averages from nodes at the far-ends of the testbed (lower
density), resulting in an underestimation of the neighborhood
size. Note that a 1-minute convergence implies that a person at
walking speed (1 m/s) covers approximately 60 meters while
sampling the current neighborhood. Assuming a device with
a transmission range of 50 m, Estreme should be able to cope
with the dynamics of practical environments.

As a final experiment, we equipped 3 colleagues with a
sensor node and asked them to move according to a predefined
path. The experiment lasted 50 minutes. In the first 15 minutes,
we asked our colleagues to have a chat at the ground floor of
the building (location A, no testbed coverage). After taking the
elevator, they reached the 9th floor where the testbed is located
and moved towards one far-end of the testbed where the
cardinality is lower (location B, cf. Figure 5). After standing
there for 15 minutes, they were asked to move slowly to the
other end of the floor (location D). The slow movement (in
section C) was required to get an accurate measurement of the
ground truth: at each step we required approximately 10 s to
get a snapshot of the cardinality of the testbed node that was
closest to the mobile node.

Figure 10 shows the estimated neighborhood cardinality of
one of the mobile nodes. This figure highlights the tradeoff
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Fig. 10. Estreme’s estimations in a 50-minute experiment with a group of 3
mobile nodes.

of T-Estreme and S-Estreme. If a quick estimation is required,
S-Estreme is the best solution. On the other hand, if a more
accurate, but longer, measurement is needed T-Estreme should
be used. By considering both estimators is possible to combine
the agility of S-Estreme with the accuracy of T-Estreme (see
the trade-off estimator in Figure 10 with α = 0.5).

Energy efficiency and bandwidth utilization. Estreme is
not only a simple method, its overhead is very limited. T-
Estreme only needs to piggyback the extra-delays incurred
by the receiver (2 bytes). S-Estreme adds another 2 bytes
to convey the current cardinality average of the receiver. In
our implementation, the final data overhead is thus 4 bytes
per estimation. This low overhead together with the short
rendezvousing of anycast, not only leads to a very efficient
utilization of bandwidth, but also to a very low duty cycle
(energy consumption). Figure 11 shows the average duty cycle
of nodes running Estreme on our testbed. The overhead of
Estreme is quite limited, the average duty cycle is between
5% and 2%, and decreases with growing neighborhoods (as
the time spent on rendezvousing decreases).
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Exploring the parameter space. Throughout our experiments,
we used some default values for the parameters of both the un-
derlying MAC and Estreme itself, namely, the wake-up period
(tw) and the sampling period (ts). These parameters influence
the performance of Estreme and, hence, it is important to assess
them more thoroughly. We tested Estreme with two different
wake-up periods, 0.5 and 1 second, and with five different
sampling periods, 0.5, 1, 2, 5 and 10 seconds. Each <ts, tw>
tuple was run for an hour using 100 nodes. Tables II and III
show the result of our experiments. The metrics of interest are
the relative error and the relative sampling rate. The relative
sampling rate captures the percentage of sampling requests that
are successfully completed.

Relative error. As predicted by our model, increasing tw
decreases the error. Changing the sampling period, instead,
does not seem to have a clear consequence on the estimation
error, except for very low ts and tw, which may indicate some
channel saturation.

Relative sampling rate. Ideally, we would like every request
from an initiator to be completed, but as ts decreases this is not
possible due to channel saturation issues. For the default setup
in our experiments <tw = 1s, ts = 1s> only approximately
30% of the requests are successful. This relative low rate
occurs because, in Estreme, an initiator that observes and on-
going estimation goes back to sleep. As the channel saturates,
more and more requests are silently canceled. It is important
to highlight however that the fraction of requests that are
successful provides the same rendezvous accuracy as of those
requests that are performed on lightly-loaded channels. In
general, the relative sampling rate can be raised by reducing
tw, but results in larger estimation errors, so is to be avoided.

V. RELATED WORK

We start by providing a comparison of Estreme within the
(mobile) sensor network domain. We then broaden our scope
and overview solutions proposed in RFID systems and mobile
phone networks. For a concise overview of the related work
see Table IV.

Mobile sensor networks. Although neighborhood cardinality
estimation is an essential building block of various protocols, it
has been little explored within the context of (mobile) sensor
networks. We follow by comparing to the three overarching
approaches:

(i) Polling and group testing mechanisms are the closest
to Estreme. Their goal it to efficiently estimate the cardinality

TABLE II. RELATIVE ERROR FOR DIFFERENT tw AND ts .

Relative error (|n̂− n| /n)

tw Sampling period ts (s)
(s) 10 5 2 1 0.5
0.5 0.16 0.16 0.29 0.31 0.24
1 0.13 0.11 0.14 0.11 0.07

TABLE III. RELATIVE SAMPLING RATE FOR DIFFERENT tw AND ts .

Relative sampling rate (%)

tw Sampling period ts (s)
(s) 10 5 2 1 0.5
0.5 93.4 76.9 58.7 40.2 23.9
1 81.6 73.3 49.3 31.8 17.7

of the n neighbors that hold a given property. Different from
Estreme, these mechanisms do not specifically target mobile
networks and, in some cases, do not estimate the exact number
of neighbors. Backcast [20] tests if n > 0, while [16] tries to
asses if n crosses a certain threshold. If n > 0, Strawman [21]
is able to efficiently identify one of the responders. Among
the various polling mechanisms, the one that is the most
related to our work is the study by Zeng et. al. [5], where
the authors propose two different methods. LogPoll is able
to estimate the logarithmic cardinality of a neighborhood,
i.e., log n, in just 4 ms, while LinearPoll is able to recognize
all the identities of the responders at the cost of spending
more energy and time. This remarkable performance comes
at a high cost and relies on several assumptions. LogPoll
and LinearPoll model and periodically calibrate the signal
strength of neighbors, effectively limiting the applicability of
these estimators to static networks with minor link dynamics.
Additionally, LinearPoll can only count a limited number of
neighbors, because it requires neighbors to send radio signal
strengths that are ∆ apart. LogPoll, on the other hand, can
only estimate log n, which gets increasingly coarse-grained as
n grows.

(ii) Cardinality estimation can also be provided through
neighbor discovery mechanisms like Disco [20], WiFlock [22]
and U-Connect [23]. Unfortunately, even with the help of
acceleration techniques such as ACC [24], these mechanisms
take in the order of 10 minutes or more, which is too slow to
cope with the mobile networks addressed by Estreme.

(iii) Last, the NetDetect [18] algorithm, while similar in
spirit to Estreme, makes stronger assumptions and achieves
lower estimation accuracy. Similar to Estreme, NetDetect
relies on the underlying distribution of packet transmissions
to estimate neighborhood cardinality. Nevertheless, with the
same default window as Estreme (50 samples), it estimates
the cardinality of a 100-node network with a relative error of
0.25 (in simulations). Furthermore, unlike Estreme which is
built on top of duty-cycling MAC protocols, NetDetect uses
the Aloha protocol and assumes that the radio is always on.

RFID. An area in which cardinality estimation plays a central
role is Radio-Frequency Identification (RFID). Different from
sensor networks, RFID systems are designed to track and
monitor thousands of goods in storage facilities. These systems



TABLE IV. COMPARISON OF THE VARIOUS METHODS TO ESTIMATE NEIGHBORHOOD CARDINALITY. IN THE “TECHNIQUE” COLUMN, “MEAS.” STANDS
FOR MEASUREMENTS AND “OBS.” FOR OBSERVATIONS.

Work Type Evaluation Mobile Scale Error Technique Estimator Device Concurrent

[4] cardinality estimator real world yes 25 3-35% Audio tones LoF [17] Cellphone few
[3] density estimator real world yes 50 20-70% Bluetooth Classifier Cellphone few
[5] group testing testbed no 32 1% RSSI meas. Classifier TelosB no

[18] cardinality estimator simulation yes 100 25% Radio obs. MLE est. Sensor node yes
[17] cardinality estimator simulation yes 65K 10% Data pkts LoF RFID no
[19] cardinality estimator simulation yes 10K 1% Data pkts Order stat. RFID no

Estreme cardinality estimator testbed yes 100 10% Radio obs. Order stat. TelosB yes

assume a centralized initiator, called reader, and a set of cheap,
passive devices called tags. To estimate the neighborhood
cardinality (the number of tags), the reader starts a response
collection process, which is usually based on a TDMA scheme.
This process consists of multiple trials, each one having
multiple slots. Within each trial, every tag selects a slot in
which it sends a response to the reader. This slot is chosen
based on the tag’s state, a random number, and a command
sent by the reader at the beginning of each trial.

Based on the number of observed responses, collisions,
and empty slots the initiator is able to estimate the population
size [17]. This process is repeated iteratively multiple times
(trials) to improve the accuracy of the estimators. While
usually the reader cannot terminate a trial until the last assigned
slot is observed, in [19] the authors propose to use order
statistics to drastically reduce the trials’ duration (an initiator
needs to observe only the first k responses). Compared to
Estreme, this work is able to achieve an accuracy of 1% and
scale to thousands of nodes. On the other hand, it has only been
tested in simulations and requires two orders of magnitude
more samples than Estreme.

Adapting such a mechanism (and others from the RFID
community) to wireless sensor networks is possible but very
challenging. For a correct observation, neighbors will need to
be synchronized, so that responses in adjacent slots do not
collide. Moreover, a global scheduling mechanism should be
in place to guarantee that at any moment in time only one
node in the neighborhood can act as a reader (initiator).

Recently, Chenet al. [25] discovered that having a 2-phase
estimation (a rough one followed by a more refined one) is the
key to improve the estimation accuracy, independently of the
chosen technique. In light of this, we plan to extend Estreme
with a second estimation phase that will use the IDs of the
encountered neighbors to improve the estimation accuracy.

Mobile phones. Initial studies have used mobile phones to
estimate the density of crowds. The most relevant work uses
audio tones to count neighbor devices [4]. The main challenge
involved is to successfully transmit data packets using low-
quality speakers/mic-rophones, as well as to cope with the
presence of environmental auditive noise. Thanks to the richer
computational capabilities of mobile phones, techniques such
as Fast Fourier Transform can be used to code the signal.
Energy efficiency is also addressed, but on a different scale
than Estreme. Here the comparison is against the typical
consumption of a WiFi network interface. Finally, similar to

Estreme, this system is able to support multiple, concurrent
estimations. While in theory the method scales to hundreds of
devices by using multiple frequencies, the system was only
tested with two concurrent estimators.

An interesting alternative to cardinality estimation is pro-
posed in [3]. The phones scan for discoverable bluetooth
devices and, based on the number of unique identifiers dis-
covered, an estimation of the crowd density is performed.
Different from Estreme and the other related works, this work
focuses on classifying the density into four classes instead of
providing a cardinality estimation. Even though the estimation
task is simpler, unrealistic assumptions on the distribution
of bluetooth-enabled devices results in estimation errors that
varies from 20 to 70%.

VI. CONCLUSIONS

In this paper we addressed the issue of determining the
neighborhood cardinality in dynamic wireless networks, where
link quality fluctuations and node mobility ask for a robust
and agile approach. An additional and important focus of our
work is to handle high densities and concurrent estimations,
requirements that are necessary in public safety applications
such as crowd monitoring. Traditional approaches cannot meet
these stringent requirements, so we developed Estreme: a
cardinality estimator based on monitoring the inter-arrival
times of (randomized) events raised by neighboring nodes.

To minimize channel usage, which is important in dense
networks, Estreme leverages on the short rendezvous time
offered by opportunistic anycast. To obtain high accuracy, Es-
treme employs a bag of tricks to account for various overheads,
(transmission) latencies, collisions, and other factors that all
distort the true rendezvous time with the first node to wake
up. We derived a theoretical model underlying the rendezvous
times, and used it to gain insight into the accuracy of Estreme
as well as to derive bounds on the estimation error.

As a proof of concept, we implemented Estreme on the
Contiki OS, and evaluated it on a testbed with node den-
sities up to 100 nodes. Estreme achieves solid performance
results with typical estimation errors below 10%, which com-
pares favorably to state-of-the-art solutions. Estreme was also
demonstrated to handle abrupt changes in density exemplified
through an experiment involving few nodes moving through
our testbed.

As part of our future work, we are currently planning a
more ambitious deployment consisting of hundreds of nodes,



with a large fraction of them being mobile. We are also
working on extending our analytical framework to provide
bounds on delay and to characterize the operational regions
of Estreme based on the channel saturation.
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