A CMOS dynamic random access architecture for RF readout of quantum devices

Delft 1/05/2019

S. Schaal, A. Rossi, V. Ciriano-Tejel, T-Y. Yang, S. Barraud, J.J.L. Morton, M. Fernando Gonzalez-Zalba

Hitachi Cambridge Laboratory, Cambridge, UK
Quantum Computers use basic concepts from Quantum Mechanics…

\[|\psi\rangle = \cos(\theta/2)|0\rangle + \sin(\theta/2)e^{i\varphi}|1\rangle \]
Superposition

\[|\psi\rangle = \frac{1}{\sqrt{2}}(|10\rangle - |01\rangle) \]
Entanglement

…and uses them to obtain computational speed-up wrt conventional compt.

Factorisation

\[\psi = c |0\rangle + s |1\rangle \]

Database searches

\[|\psi\rangle = \frac{1}{\sqrt{2}}(|10\rangle - |01\rangle) \]

Optimisation

\[|\psi\rangle = \cos(\theta/2)|0\rangle + \sin(\theta/2)e^{i\varphi}|1\rangle \]

P. Shor, SIAM J. Compt 26 1484

Qubits

IBM Quantum Experience (2016)

IonQ (2018)
Silicon Quantum Processors - Specs

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First demonstrations</td>
<td>2012</td>
<td>Maune Nature Morello, Nature</td>
</tr>
<tr>
<td>Single Qubit Gates</td>
<td>>99.9%</td>
<td>Yoneda et al Nat Nano 13 102 (2018)</td>
</tr>
<tr>
<td>Two Qubit Gate</td>
<td>98%</td>
<td>W. Huang et al arXiv:1805.05027 (2018)</td>
</tr>
</tbody>
</table>
Opportunities at the device level

- For Control
 Utilize MW cavities

- For Readout
 Gate-based sensing
 + Pauli Spin Blockade

- For Quantum Dot definition
 Geometrically defined
 (Silicon Nanowires)

UNSW (2018)
Opportunities at the circuit level

One or two qubits

Large scale quantum circuits

Interfaces with classical electronics

Veldhorst, Nature Nano. 9 981 (2014)
Kawakami, Nat Nano 9 (2014)
Maurand, Nat Commun 7 (2016)

Veldhorst, Nat. Commun. 8 1766 (2017)
Vandersypen, NPJ Quant. Info 3 34 (2017)
Classical – Quantum Interfaces

Large-scale Quantum Computing

1 QUBIT -> 1 LINE
Classical – Quantum Interfaces

Large-scale Quantum Computing

N QUBIT \rightarrow O(N^{1/p}) \text{ LINES}
\quad p = \text{Rent Exponent}
DRAM applied to Quantum Devices?

Classical DRAM (p=2)

DRAM for QDs?

Memory Capacity 1GB
Refresh Time 64 ms
Capacitance ~1 fF
Leakage current ~1-10 fA
Our Response

- A transistor-based solution
 - QDs on narrow FDSOI
 - Control FET on wide FDSOI

- Focused on Readout
 - Sequential gate-based readout
 - Mixed (Analogue-Digital) signals

- Advantage
 - One resonator per row
 - Shared control via dataline

- Modular approach
 - Test 1 cell
 - Test 2 cells (sequential readout)

Our Response

- Time-multiplexing in the row
- Freq-multiplexing in the column
A CMOS dynamic random access architecture for RF readout of quantum devices
3D Fully-depleted silicon-on-insulator FET

V_{tg}

V_{sd}

200 nm

$|\Psi|^2 (\times 10^{-3} \text{ nm}^{-3})$

$y (\text{nm})$

$z (\text{nm})$

$|\Psi|^2 (\times 10^{-3} \text{ nm}^{-3})$

$y (\text{nm})$

$z (\text{nm})$

D. Ibberson et al., APL 113 053104 (2018)
Can we operate a single cell at mK using FDSOI?

FET:
- Width=10 um
- Length=50 nm

QD:
- Width=60 nm
- Length=30 nm

Can we operate a single cell at mK using FDSOI?
- Can we perform RF readout via the control FET?
- How sensitively?
- Can we lock charge?

FET:
Width=10 μm
Length=50 nm

QD:
Width=60 nm
Length=30 nm

CMOS technology
Devices are on same chip at mK

Single-electron memory cell

FET:
- Width=10 µm
- Length=50 nm

QD:
- Width=60 nm
- Length=30 nm

CMOS technology
Devices are on same chip at mK

Single-electron memory cell – WL

Single-electron memory cell

Two Cells
Two cells – Frequency spectrum

Spectral overlap
13 MHz

Quality factor
100->40
Two cells - Reflectometry

Digital inputs and variability

<table>
<thead>
<tr>
<th></th>
<th>Cell 1 (V_{WL1})</th>
<th>Cell 2 (V_{WL2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>On (V)</td>
<td>> 0.9</td>
<td>> 0.9</td>
</tr>
<tr>
<td>Off (V)</td>
<td>< 0.7</td>
<td>< 0.7</td>
</tr>
<tr>
<td>Forbidden (V)</td>
<td>0.7/0.9</td>
<td>0.7/0.9</td>
</tr>
</tbody>
</table>
Retention time - Charge locking

Discharge circuit - RC

\[V_G(t) = V_{\text{final}} \left[1 + \frac{R_F}{R_G} \exp \left(-\frac{t}{\tau} \right) \right] \]

Time Constant

\(\tau = 0.25-1 \text{ s} \)

Retention time

\(t=20 \text{ ms (voltage drop 1\%)} \)

By operating at high \(V_{WL}^{\text{LOW}} = 0.5V \)
Time multiplexing

Time multiplexing

Conclusion

We are combining three elements that most likely will play a role in a scalable silicon-based quantum processor

- Quantum dots – Quantum electronics
- FETs - Digital electronics
- Gate-based sensing – Analogue electronics

Further steps

- Optimization: Minimization of charge injection and clock feedthrough
- Combination of time and freq multiplexing
- Demonstration of reduction of inputs (3x3)
- IC manufacturing
Thank you for your attention

01/05/2019

M Fernando Gonzalez Zalba (mg507@cam.ac.uk)
Hitachi Cambridge Laboratory
Hitachi Europe Ltd.