Conundrums with Uncertainty Factors

Roger Cooke
Resources for the Future
Dept. Math, TU Delft
Dec. 2, 2009

Abstract: The practice of Uncertainty Factors as applied to non-cancer endpoints in the IRIS data base harkens back to traditional safety factors. In the era before risk quantification these were used to build in a ‘margin of safety’. As risk quantification takes hold, the safety factor methods yield to quantitative risk calculations to guarantee safety. Many authors believe that uncertainty factors can be given a probabilistic interpretation as ratios of response rates, and that the reference values computed according to the IRIS methodology can thus be converted to random variables whose distributions can be computed with Monte Carlo methods, based on the distributions of the uncertainty factors. Recent proposals from the National Research Council echo this view. Based on probabilistic arguments, several authors claim that the current practice of uncertainty factors is over-protective. When interpreted probabilistically, uncertainty factors entail very strong assumptions on the underlying response rates. For example, the factor for extrapolating from animal to human is the same whether the dosage is chronic or sub-chronic. Together with independence assumptions, these assumptions entail that the covariance matrix of the logged response rates is singular. In other words, the accumulated assumptions entail a log linear dependence between the response rates. This in turn means that any uncertainty analysis based on these assumptions is ill-conditioned; it effectively computes uncertainty conditional on a set of zero probability. The practice of uncertainty factors is due for a thorough review. Two directions are briefly sketched, one based on standard regression models, and one based on non-parametric continuous Bayesian Belief Nets.

Keywords: Uncertainty factors, LOAEL, NOAEL, Benchmark Dose

1. Introduction

The method of uncertainty factors (Lehman, A.J., Fitzhugh, O.G., (1954)), harkens back to the engineering practice of safety factors. If the reference load for an engineered structure is X, then engineers may design the structure to withstand load 3X, using a safety factor of 3 to create a margin of safety. If the structure functions in a corrosive environment, another factor would be multiplied to guarantee safety, and another factor for heat, another factor for vibrations, etc. The choice of values is simply based on “good engineering practice”, i.e. what has worked in the past. Although safety factors are still common in engineering, they are giving way to probabilistic design in many applications. The reason is that compounding safety factors quickly leads to overdesigning. Compounding safety margins for spaceflight systems may render them too heavy to fly. As our understanding of the system increases, it becomes possible to guarantee the requisite safety by leveraging our scientific understanding of the materials and processes. That of course requires formulating clear probabilistic safety goals, and developing the techniques to demonstrate compliance.

The engineering community has never sought to account for uncertainty by treating safety factors as random variables and assigning them (marginal) distributions; such an approach would not counteract the overdesigning inherent in safety factors. Many authors, including the recent NAS report Science and Decisions (pp 159 ff) have advocated just such a probabilistic approach.
EPA’s flagship resource for risk of exposure to hazardous chemicals, the Integrated Risk Information System (IRIS) uses uncertainty factors as safety factors. For non-cancer risks, the goal is to derive a reference dose (RfD) or reference concentration (RfC). These “reference values” have been based on a “No Observed Adverse Effect Level” (NOAEL) or Lowest Observable Adverse Effect Level (LOAEL). The reference dose methodology is applied in several programs within EPA, including Acute Reference Exposure (ARE), Acute Exposure Guideline Level (AEGL) Office of Pesticide Programs procedures, Office of Water (OW) Health Advisories (HA), and the Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRL). These programs have developed different approaches to setting acute, short-term and longer term reference values. Efforts are underway to incorporate these different values within the Integrated Risk Information System (IRIS) database.

As pointed out by the WHO 1999 (cited in Kalberlah et al 2003) the NOAEL is not a biological threshold, and may either under- or over-estimate a true biological threshold. More recently, the Benchmark Dose (BMD) or Lower confidence limit of the Benchmark dose (BMDL) have been used as a point of departure for deriving reference values. The Effective Dose at which r% of the exposed subjects respond, EDr, is another indicator sometimes used as a point of departure. The regulatory history is sketched in (Dourson et al 1983). According to EPA/630/P-02/2002F the current definition of the RfD is:

RfD: an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious effects during a lifetime. It can be derived from a NOAEL, LOAEL, or BMD, with UFs generally applied to reflect limitations of the data used. Generally used in EPA’s noncancer health assessments.

The same document proposes a revised definition.

Reference Value: an estimate of an exposure, designated by duration and route, to the human population (including susceptible subgroups) that is likely to be without an appreciable risk of adverse health effects over a lifetime. It is derived from a BMDL, a NOAEL, a LOAEL, or another suitable point of departure, with uncertainty/variability factors applied to reflect limitations of the data used.

The Reference Value is obtained by dividing a point of departure by uncertainty factors\(^1\) (a typical default value is 10) to account for uncertainty from various sources. These sources, with notion used in IRIS are:

\(^1\) The IRIS data base currently defines “Uncertainty/Variability Factor (UFs)” as: “One of several, generally 10-fold, default factors used in operationally deriving the RfD and RfC from experimental data. The factors are intended to account for (1) variation in susceptibility among the members of the human population (i.e., inter-individual or intraspecies variability); (2) uncertainty in extrapolating animal data to humans (i.e., interspecies uncertainty); (3) uncertainty in extrapolating from data obtained in a study with less-than-lifetime exposure (i.e., extrapolating from subchronic to chronic exposure); (4) uncertainty in
I. extrapolation from LOAEL to NOAEL (UF\textsubscript{L}),
II. data sparseness, (UF\textsubscript{D}: extrapolation from Poor to Rich data contexts)
III. inter species extrapolation, (UF\textsubscript{A}: extrapolation from Animal to Humans)
IV. sensitive human subpopulations (UF\textsubscript{H}), and
V. sub-chronic to chronic dosage (UF\textsubscript{S}: extrapolation from sub-chronic to chronic dosage).

The Definition makes use of probabilistic and quantitative language as “likely”, and “appreciable risk”. Although this suggests a quantitative interpretation, none has been proposed to date. To indicate how indeterminate words like “appreciable risk” and “likely” can be, consider the “Guidance Notes for Lead Authors of the IPCC Fourth Assessment Report on Addressing Uncertainties” issued by the Intergovernmental Panel On Climate Change, reproduced as Table 1.

Table 1: Likelihood table from IPCC Fourth Assessment Report on Addressing Uncertainties

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Likelihood of the occurrence/ outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtually certain</td>
<td>> 99% probability of occurrence</td>
</tr>
<tr>
<td>Very likely</td>
<td>> 90% probability</td>
</tr>
<tr>
<td>Likely</td>
<td>> 66% probability</td>
</tr>
<tr>
<td>About as likely as not</td>
<td>33 to 66% probability</td>
</tr>
<tr>
<td>Unlikely</td>
<td>< 33% probability</td>
</tr>
<tr>
<td>Very unlikely</td>
<td>< 10% probability</td>
</tr>
<tr>
<td>Exceptionally unlikely</td>
<td>< 1% probability</td>
</tr>
</tbody>
</table>

Does exposure at the reference value entail a 66% probability of being without appreciable risk? Reference value exposure to 100 substances acting independently would then entail a 10^{-18} probability of avoiding “appreciable risk”. Being “virtually certain” for each of 100 independent chemicals would still entail only a 37% chance of avoiding appreciable risk. Such examples underscore the inevitability of quantifying risk.

and combining the “error factors”\(^2\) according to the formula \(K_{S\times A} = \exp(1.6449 \times \sqrt{\sigma_S^2 + \sigma_A^2})\), where \(\sigma_S^2, \sigma_A^2\) are the variances of \(\ln(\text{UF}_S)\) and \(\ln(\text{UF}_A)\). Thus \(\text{UF}_S \times \text{UF}_A\) is a lognormal variable with Median(\(\text{UF}_S \times \text{UF}_A\)) = Median(\(\text{UF}_S\))\(\times\)Median(\(\text{UF}_A\)), and 95 percentile given by Median(\(\text{UF}_S \times \text{UF}_A\))\(\times\)KS\(\times\)A. If \(\text{UF}_S\) and \(\text{UF}_A\) each have an error factor or 10, then the error factor of \(\text{UF}_S \times \text{UF}_A\) is not 100 but 25.95. Several authors suggest that multiplying uncertainty factors might over-protect\(^3\). Recent proposals from the National Research Council are based on the random chemical approach, and inherit its problems (NRC, 2009). For data on response ratios see (Rhomberg and Wolff, 1998, Rhomberg and Lewandowski, 2004).

Section 2 identifies assumptions which the current practice imposes on a probabilistic interpretation of uncertainty factors. The random chemical model is formulated in section 3, and section 4 shows that the logged covariance matrix of response rates is singular. Suggestions for moving beyond uncertainty factors are explored in section 5.

2 Assumptions Underlying Uncertainty Factors

A probabilistic model for uncertainty factors would consist of a sample space and a set of random variables together with assumptions on their joint distribution such that relations between these random variables reflect the operations which practitioners perform with uncertainty factors. Under the random chemical model, uncertainty factors are random variables reflecting response ratios of randomly sampled toxic substances. Distributions of these ratios are used to draw inferences about new or untested chemicals. The operations performed with uncertainty factors entail assumptions on their joint distribution. The prevailing assumptions are presented informally in this section, precise versions are used in section 3.

We consider a Point Of Departure (POD), which may be either a BMD, a LOAEL, a NOAEL, and Effective Dose for response of \(r\)% of the population (ED\(_r\)). The relevant assumptions are (“UF’s” denotes “uncertainty factors”, not to be confused with “UF’s”):

1. The UF’s are independent random variables

\(^2\) Factors which multiply and divide the median of a log normal distribution to obtain the 5- and 95 percentiles are termed error factors in the technical risk literature (WASH-1400, 1975).

\(^3\) “One of the crucial assumptions affecting how uncertainty factors (UF’s) are operationally implemented is that they are independent of each other. This assumption of independence has led to the conclusion that the collective uncertainty is the product of all the individual uncertainty factors” (Calabrese and Gilbert, 1993, p.44). “Because not all true differences are expected to be at their extremes simultaneously, reducing an observed exposure value by a product of default uncertainty factors may lead to undue conservatism” (Kodell and Gaylor 1999: p. 190). “Sound combination of extrapolation factors still is an unresolved task in risk assessment. In case of simple multiplication to an overall extrapolation factor this may lead to overly conservative human limit values, if all maximal single factors are used simultaneously. In addition, multiplication of single extrapolation factors would only be correct for independent parameters” (Kalberlah et al, 2003, p 97). “Because of the application of various uncertainty factors that are multiplied with each other, the standard method for deriving acceptable human limit values is generally considered to be conservative. Indeed, when each individual uncertainty factor by itself is regarded to reflect a worst case situation, their product, i.e. the overall uncertainty factor, will tend to be overly conservative” (Slob and Pieters, 1998, p 787).
2. The extrapolation expressed by a UF is independent of other extrapolations. That is, the UF for extrapolating from poor to rich data contexts does not depend on whether the extrapolation concerns chronic or sub chronic dose. The extrapolation from subchronic to chronic dosage does not depend on whether this is applied to humans or animals, or to the poor/rich data contexts, etc.

3. The conditional distribution of a human reference value, given an observed (unextrapolated) POD, is obtained by dividing the observed POD by the product of the UF’s corresponding to the required extrapolations.

3. Random Chemical Model

We illustrate the random chemical model for the extrapolations Poor-to-Rich, Subchronic-to-chronic and Animal-to-Human. Other extrapolations could serve equally well to illustrate the issues. Suppose we randomly sample toxic chemical \(t \) from a representative set of toxic substances. For each \(t \), we imagine that we have values for the POD for animals at each dosage regime (chronic, sub-chronic; \(C,S \)), for each data context (poor, rich; \(P,R \)) and for two species (animal, human; \(A,H \)). Hence if \(HC(t) \) is the reference value for \(t \), that is the chronic dose which is likely to be without appreciable lifetime risk, we may always write an equation of the form

\[
HC(t) = \frac{ASR(t)}{ASP(t)} \times \frac{ACR(t)}{ASR(t)} \times \frac{HC(t)}{ACR(t)}
\]

If we consider \(t \) as a randomly drawn chemical, which, following convention, we denote with upper case \(T \), we can write (2) as an equation of random variables;

\[
HC(T) = \frac{ASR(T)}{ASP(T)} \times \frac{ACR(T)}{ASR(T)} \times \frac{HC(T)}{ACR(T)}
\]

4 Sub-chronic Exposure is defined as: “Repeated exposure by the oral, dermal, or inhalation route for more than 30 days, up to approximately 10% of the life span in humans (more than 30 days up to approximately 90 days in typically used laboratory animal species).” Chronic Exposure is defined as: “Repeated exposure by the oral, dermal, or inhalation route for more than approximately 10% of the life span in humans (more than approximately 90 days to 2 years in typically used laboratory animal species).” \(UA \) is defined as follows: “Use an additional 10-fold factor when extrapolating from valid results from long term studies on experimental animals when results of studies of human exposure are not available or are inadequate...” and \(UC \): “...Use an additional 10-fold factor when extrapolating from less than chronic results on experimental animals when there are no useful long-term human data”. These definitions would not tell us how to extrapolate from human sub-chronic studies, nor from animal sub-chronic to animal chronic. Such extrapolations are surely less prevalent, though not excluded, as the definitions of sub-chronic and chronic dosages make clear. The absence of separate uncertainty factors, eg for sub-chronic-to-chronic for animals and for humans, suggests that (2) is implicitly assumed. Indeed, Swartout et al 1998 write: “Within the current RfD methodology, UF\(_ C \) [here, UF\(_ S \)] does not consider differences among species, endpoints, or severity of effects, the same factor is applied in all cases” (p.275). Due to the rarity of relevant human data, the same authors suggest the use of other endpoints as surrogates in estimating \(U_A \).
If we now write

\[
UF_D = \frac{ASP(T)}{ASR(T)}, \quad UF_S = \frac{ASR(T)}{ACR(T)}, \quad UF_A = \frac{ACR(t)}{HC(t)}
\]

(4)

then it appears that have interpreted UF’s as random variables based on the random chemical model:

\[
HC(T) = \frac{ASP(T)}{UF_D \times UF_S \times UF_A}
\]

(5)

Equation (5) reflects an assumption noted by many authors, namely that the UF’s, as random variables must be independent. However, (5) involves more assumptions which have not received ample attention. Suppose we observe for a given toxic substance \(t\), that \(ASP(t) = 30 \text{ [units]}\). We use \(30 / (UF_D \times UF_S \times UF_A)\) as the conditional distribution of \(HC(T)\) given \(ASP(T)=30\). This must hold for any observed value, thus \(ASP(T)\) must be independent of \(UF_D \times UF_S \times UF_A\). Barring pathological situations, this means that \(ASP(T)\) is independent of each of these UF’s.

Note that these conditionalization assumptions always apply from “more easily measured to more difficult to measure”. They do not apply in the other direction. Letting “⊥” denote independence, if \(X \perp X/Y\) and also \(Y \perp X/Y\), then it is easy to show that \(X/Y\) must be constant.

4. Implications of Assumptions

These independence assumptions are quite strong and have consequences. Consider the statement that

\[ASP(T) \perp UF_D\]

(6)

Note that \(ASR(T) = ASP(T) / UF_D\). Taking logs of both sides:

\[\text{Rehearsing elementary probability, suppose we wish to express the uncertainty in random variable } X, \text{ given that another random variable } Y \text{ takes the value } y. \text{ One way of modeling this is to write } X \text{ as a function } g(Y, Z) \text{ of } Y \text{ and some other random variable } Z. \text{ If } Z \text{ is independent of } Y, \text{ then the conditional distribution } (X|Y=y) \text{ of } X \text{ given } Y=y \text{ is the distribution of the random variable } g(y, Z). \text{ If } Y \text{ and } Z \text{ are not independent, they we must use the conditional distribution } (Z|Y=y) \text{ when computing the distribution of } g. \text{ In this case } X = HC(T), Y = ASP(T), Z = UF_D(T) \times UF_S(T) \times UF_A(T) \text{ and } g(Y, Z) = Y/Z. \text{ To justify the type of conditioning for which the UFs are intended we must have } ASP(T) \text{ independent of } \{UF_D(T), UF_S(T), UF_A(T)\}.\]

\[\text{Take logs, write out the covariances, and infer that } \sigma^2_{\ln(X) - \ln(Y)} = 0.\]
\[\ln(\text{ASR}(T)) = \ln(\text{ASP}(T)) - \ln(\text{UF}_D). \quad (7) \]

\(\text{ASP}(T) \perp \text{UF}_D\) entails also \(\ln(\text{ASP}(T)) \perp \ln(\text{UF}_D)\); and that

\[\text{VAR}(\ln(\text{ASR}(T))) = \text{VAR}(\ln(\text{ASP}(T))) + \text{VAR}(\ln(\text{UF}_D)). \quad (8) \]

This says that the variance of logged animal PODs based on sub-chronic dosage and rich data sets is strictly greater than the variance of logged animal PODs based on a subchronic dosage with poor data contexts; the same holds for chronic dosage. This seems counterintuitive. Similarly, \(\text{ASP}(T) \perp \text{UF}_S\) implies that \(\text{VAR}[\ln(\text{ACP}(T))] > \text{VAR}[\ln(\text{ASP}(T))],\) and the same holds for rich data contexts. This means that the variance of the logged animal chronic values is strictly greater than the variance of the logged animal sub-chronic value, which is at odds with statements in the Cancer Guidelines\(^7\). This underscores the importance of identifying underlying assumptions.

We now demonstrate the singularity of the covariance matrix of logged terms in the UFs. It suffices to consider only the extrapolation from poor to rich data contexts, and from sub-chronic to chronic dosages, all for animal PODs. We could equally well have chosen \(\text{UF}_L\) and \(\text{UF}_A\), the argument would be identical. To lighten the notation in this section, let \(\text{SP}\) denote the animal value of the POD under Subchronic dosage in a Poor data context, \(\text{CR}\) the animal POD under Chronic dosage in a Rich data context, and let \(\text{SR}\), and \(\text{CP}\) be defined similarly. Each of these is considered as a random variable whose values are determined by randomly sampling a toxic substance from a representative set.

The basic equations are

\[\text{CR} = \text{SP} \times (\text{SR}/\text{SP}) \times (\text{CR}/\text{SR}) = \text{SP} / (\text{UF}_D \times \text{UD}_S) \quad (9) \]

\[\text{CR} = \text{CP} \times (\text{CR}/\text{CP}) = \text{CP}/\text{UF}_D. \quad (10) \]

The same UF is applied for extrapolating from Poor to Rich data contexts, regardless whether the dosage is chronic or subchronic. This means that \(\text{UF}_D\) has a distribution which can be measured in two ways:

\[\text{UF}_D \sim \text{SP}/\text{SR} \quad (11) \]

\[\text{UF}_D \sim \text{CP}/\text{CR}. \quad (12) \]

Similarly the UF for extrapolating from sub-chronic to chronic is used for both rich and poor data contexts, hence

\(^7\) “Uncertainty usually increases as the duration becomes shorter relative to the averaging duration or the intermittent doses become more intense than the averaged dose. Moreover, doses during any specific susceptible or refractory period would not be equivalent to doses at other times.” (CG 3-4).
We use the following notation.

\[A = \text{VAR}(\ln(SP)) \]
\[B = \text{VAR}(\ln(SR)) \]
\[C = \text{VAR}(\ln(CP)) \]
\[D = \text{VAR}(\ln(CR)). \]

If two variables are independent, then also the logs of these variables are independent. If \(X \) is independent of \(Y \), then \(X \) is also independent of \(1/Y \). The following independence statements are assumed by the UF methodology, under a probabilistic interpretation:

1.1 \(SP \perp SP/SR \) (enable conditionalization in (9))
1.2 \(SP \perp SR/CR \) (enable conditionalization in (9))
1.3 \(SP/SR \perp SR/CR \) (\(UF_D \perp UF_S \))
1.4 \(SP \perp CP/CR \) (enable conditionalization in (9) with (12))
1.5 \(CP \perp CP/CR \) (enable conditionalization in (10))
1.6 \(CP \perp SP/SR \) (enable conditionalization in (10) with (11))
1.7 \(SP/CR \perp CP/CR \) (\(UF_S \perp UF_D \))

If two variables are independent, then their covariance is zero, let \(\text{Cov}(X,Y) \) denote the covariance of \(X \) and \(Y \). Taking logs of 1.1 – 1.7, and setting covariances of independent variables equal to zero, using the linearity of covariance, we find:

1.1 \(\Rightarrow \) \(A = \text{Cov}(\ln(SP), \ln(SR)) \)
1.2 & 1.1 \(\Rightarrow \) \(A = \text{Cov}(\ln(SP), \ln(CR)) \)
1.3 & 1.1 & 1.2 \(\Rightarrow \) \(B = \text{Cov}(\ln(SR), \ln(CR)) \)
1.4 & 1.1 & 1.2 \(\Rightarrow \) \(A = \text{Cov}(\ln(SP), \ln(CP)) \)
1.5 \(\Rightarrow \) \(C = \text{Cov}(\ln(CP), \ln(CR)) \)
1.6 & 1.4 \(\Rightarrow \) \(A = \text{Cov}(\ln(CP), \ln(SR)) \)
1.7 & 1.6 & 1.5 & 1.3 \(\Rightarrow \) \(D = B+C-A \)

We bring these relations together in the following covariance matrix:

<table>
<thead>
<tr>
<th></th>
<th>Ln(SP)</th>
<th>Ln(SR)</th>
<th>Ln(CP)</th>
<th>Ln(CR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(SP)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Ln(SR)</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Ln(CP)</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Ln(CR)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B+C-A</td>
</tr>
</tbody>
</table>
Observe that the second plus third rows, minus the first row equals the fourth row. The determinant of this matrix is zero, meaning that there is a linear relationship between the variables. Using $VAR(X+Y) = VAR(X) + VAR(Y) + 2Cov(X,Y)$, with the values in Table 3 it follows that

$$VAR(ln(CR) + ln(SP) − ln(SR) − ln(CP)) = 0.$$ \hspace{1cm} (15)

In other words,

$$CR = \text{constant} × SR × CP / SP$$ \hspace{1cm} (16)

Re-arranging, we may write this as $CR/CP \propto SR/SP$. This says that the two random variables in (11) and (12) must actually be the same variable. This means that if we actually knew the values $SP(t)$, $CP(t)$ and $SR(t)$ we could compute $CR(t)$. Similar singularities arise if we consider other pairs of UFs.

5. How forward?

The first step forward is to realize that the current system will not admit a probabilistic interpretation and that the fundamental changes are required if we wish to account for uncertainty in reference values. Ultimately, for important chemicals, we should like to combine animal data, in vitro human data, and epidemiological data from natural experiments to derive dose response relations with uncertainty quantification. However, there will always be a need to evaluate new potentially toxic chemicals based on their similarity to other chemicals and meager experimental data. We should like a simple method which

1. Yields predictions of toxicological indicators with uncertainty via a valid probabilistic mechanism
2. Is based on a random chemical model, regarding a new chemical as a random sample from a reference distribution of chemicals
3. Is non-disruptive.

This last desideratum is very important, and has received insufficient attention. Regulatory bodies cannot turn on a dime, but must contend with a legacy of accepted practice. The foregoing suggests that a probabilistically valid inference system will be quite different from the current system. Nonetheless, to meld with current practice, it must initialize on the current system, and allow this system to evolve in a measured fashion.

We can use the IRIS database to obtain a reference set of substances, perhaps supplemented with structured expert judgment. These reference values serve to define a population of toxic substances from which a new substance is regarded as a random sample. The idea is simply to discard the UF methodology, but to retain the results of that method as a reference distribution to initialize the new system. The reference distribution can further evolve under the new regime, but the changes in toxicity indicator values will be non-disruptive. There are at least two ways of leveraging such a reference set to draw
inferences on new substances, standard log linear regression and non-parametric Bayesian Belief Nets.

5.1 Standard (log) linear regression

To render this discussion more intuitive, we focus on animal (A) and human (H) responses at chronic (C) and sub-chronic (S) dosages. Suppose we are interested in predicting $\ln(HC)(t^*)$ for a new toxic substance t^*, and we can estimate $\text{Cov}(\ln(HC), \ln(AC))$ and $\sigma^2(\ln(AC))$ from a large data set of toxic substances. Translating all variables to have mean zero, the linear least squares predictor (llsp) of $\ln(HC)$ based on $\ln(AC)$ would be

$$\text{llsp}(\ln(HC)(t^*) \mid \ln(AC)(t^*)) = \text{Cov}(\ln(HC), \ln(AC)) \times (1 / \sigma^2(\ln(AC))) \times \ln(AC)(t^*).$$

If $\ln(AC)(t^*)$ is known, this is a predictor of $\ln(HC)(t^*)$, not a random variable. We might try to think of $\sigma^2(\ln(AC)) / \text{Cov}(\ln(HC), \ln(AC))$ as an uncertainty factor, but these would not behave as uncertainty factors in the IRIS methodology. To give one illustration, suppose we observed $\ln(AS)(t^*)$ in addition to $\ln(AC)(t^*)$. The IRIS method would not use the additional information regarding $AS(t^*)$, but would simply use $AC(t^*)/UA$. However, following the theory of linear models, we should have

$$\text{llsp}(\ln(HC)(t^*) \mid \ln(AC)(t^*), \ln(AS)(t^*)) = \text{llsp}(\ln(HC)(t^*) \mid \ln(AC)(t^*)) +$$

$$\text{llsp}[\ln(HC)(t^*) \mid \ln(AC)(t^*) - \text{llsp}(\ln(AC)(t^*) \mid \ln(AS)(t^*))].$$

In other words, we add the llsp of $\ln(HC)(t^*)$ based on $\ln(AC)(t^*)$ to the llsp of $\ln(HC)(t^*)$ based on the residual $\ln(AC)(t^*) - \text{llsp}(\ln(AC)(t^*) \mid \ln(AS)(t^*)).$

We can extract the variance of the llsp; for arbitrary random vectors X, Y, we have (the variance and covariance terms now denote matrices):

$$\sigma^2(\text{llsp}(Y \mid X)) = \text{Cov}(Y, X) (\sigma^2(X))^{-1} \text{Cov}(X, Y).$$

We also obtain the variance of the residual as:

$$\sigma^2(Y - \text{llsp}(Y \mid X)) = \sigma^2(Y) - \sigma^2(\text{llsp}(Y \mid X)).$$

Note that the last two variances do not depend on the value of the conditioning variable X. In general, the variance of the residual is not the conditional variance of Y given X, and we do not get the conditional distribution of Y given X. In many cases, we may actually be interested in the distribution of human values given observed animal values, especially if these observed values are in the tails of their respective distributions. Such considerations drive us in the direction of Bayesian Belief Nets.

5.2 Non-Parametric Continuous Bayesian Belief Nets
Non-parametric continuous Bayesian Belief Nets (NPCBBNs) build a joint density (Hanea et al. 2008). A full description is inappropriate here, suffice to say that NPCBBNs are based on empirical marginal distributions and empirical rank correlations; they build a joint density by modeling the copula that realizes these empirical rank correlations. In principle any copula can be used, but in practice the joint normal copula is preferred, as it enables rapid conditionalization. Roughly, this means that the rank dependence structure is modeled as that of a joint normal distribution. This hypothesis can be tested, based on the sampling distribution of the determinant of the normal rank correlation matrix. The marginal distributions and rank correlations are not modeled, but taken directly from data, hence they do not form part of the hypothesis being tested. If the normal copula hypothesis is not rejected, then we can proceed to conditionalize any variable on any set of values of other variables.

5.2.3 Using NPCBBNs for inference on toxicity

A BBN is a mechanism for encoding inferences. Drawing an inference from data is performed by conditionalizing a BBN on the data; the distribution captured in the BBN is updated with current data. BBNs are simply a perspicuous way of visualizing complex inference patterns. Continuous non-parametric BBNs enable this inference based on an initial data set. With the normal copula, very large problems with very complex inference structures can be handled analytically, so that the inferences are effectively instantaneous. The marginal distributions and rank correlation structure is read from the data; the only assumption is that these rank correlations are compatible with the normal copula. This is a much weaker assumption than that underlying standard regression models, namely that error terms are independent and normally distributed.

To compare the BBN approach to standard regression modeling, suppose that we are interested in some probabilistic response in animals (A) and humans (H) at chronic (C) and subchronic (S) dosage. As before, this might be a RfD, RfC, BMD, or an ED_{10} or indeed any other indicator. It could be an ED_{10} for subchronic dosage of animals, ED_{50} for chronic dosage for animals, a RfD for chronic human dosage, and a BMD for subchronic human dosage. All that matters is that we have a list of, say 100, toxic substances filled in as illustrated in Table 2. The units in each column must be the same, but needn’t be the same across columns.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxic Chem. 2</td>
<td>45 [AS units]</td>
<td>30 [AC units]</td>
<td>30 [HS units]</td>
<td>26 [HC units]</td>
</tr>
<tr>
<td>Toxic Chem. 3</td>
<td>30 [AS units]</td>
<td>35 [AC units]</td>
<td>20 [HS units]</td>
<td>14 [HC units]</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Table 3: Illustrative input for BBN
When the inference engine is “seeded” in this way, we can apply it to some new chemical which we regard is a random sample from the population of chemicals from which the chemicals in Table 2 are randomly drawn. We guarantee thereby, that the inferences for new chemicals will reflect the relations between the probabilistic response variables captured in Table 2.

Figure 1 shows the result of reading these (fictitious) data into a NPCBBN. The conditional rank correlations are inferred from the relations in Table 2 (Hanea et al 2008). Figure 2 shows the marginal histograms, with means and standard deviations. Figures 3 - 5 show how this BBN can be conditionalized to draw inferences for new toxic substances, regarded as members of the same population as in Table 2.

Figure 1 Bayesian Belief Net for \(P, \text{Animal, Subchronic (AS)} \), \(P, \text{Animal, Chronic (AC)} \), \(P, \text{Human, Subchronic, (HS)} \) and \(P, \text{Human, Chronic (HC)} \), distributions over set of (fictitious) toxic substances; (conditional) rank correlations as inferred from Table 3 are shown.
Confronted with a new substance, our inferences from test results may be based on the assumption that this chemical is randomly drawn from the toxicity distribution captured in the BBN. Suppose for a new substance, we observe that $AS = 60$, our mean value for HC shifts from 51.1 (Figure 2) to 47.6 (Figure 3). The conditional distribution of HC given this information is also available and is shown as a histogram, the original distribution is shown in gray. The standard deviation of HC has shifted from 24.7 to 17.1. Suppose we conditionalize on $AS=100$, a very high value (Figure 4), the mean and standard deviation of HC are 80.2 and 26.1 respectively. In contrast to the log linear regression model we obtain the full conditional distributions, and we note that the conditional variances are not constant. Conditionalization of AS on a typical value (60) lowers the conditional uncertainty of HC relative to the unconditional uncertainty. Whereas conditionalizing AS on a large value (100) increases the conditional uncertainty. In Figure 5 we conditionalize on a very high value of AC, 130. In combination with the very low value of AS, 9, this constitutes a very unlikely combination. Nonetheless, because we have built a multivariate density function, we can conditionalize on this unlikely situation and find the HC has mean and standard deviation of 78.9 and 21.4 respectively. AC’s influence on HC is stronger than that of AS. Indeed, the correlation on the arrow between AC and HC in Figure 1 is the conditional correlation of HC and AC given AS. The unconditional correlation between AC and HS is 0.825.
Figure 3 Distribution in Figure 2, conditionalized on observing $AS = 60$

Figure 4 Distribution in Figure 2, conditionalized on observing $AS = 100$
6. Conclusion

UFs were introduced to create a margin of safety. Attempts to give them a probabilistic interpretation in terms of response ratios of random chemicals encounter insuperable obstacles. Under prevailing assumptions the logged response ratios have a singular covariance matrix. Any Monte Carlo analysis based on the probabilistic interpretation of UFs is therefore ill-conditioned. Claims that UFs over-protect, as well as recent NRC proposals for probabilistic interpretations, are equally ill-conditioned. A thorough review would not be inappropriate. The effort to quantify uncertainty in dose response should skirt UFs altogether and focus on dose response modeling. However, the need for rapid and simple inference based on a random chemical model will persist. A new rapid inference system should (i) be as easy to use as the current system, (ii) should derive toxicological indicator values, with uncertainty, in a probabilistic valid fashion, and (iii) should initialize on current practice. Two lines of attack have been sketched here, one based on standard regression modeling, and one based on Bayesian Belief Nets. Undoubtedly, more good ideas will emerge, once the inevitability of thorough going reform is recognized.

REFERENCES

23. Reference Dose (RfD): Description and Use in Health Risk Assessments, Background Document 1A March 15, 1993, Reference Dose (RfD) Description and Use in Health Risk Assessments IRIS US EPA.mht