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1. Introduction

D.R. Cox’s article in the Journal of the Royal Statistical Society ”Regression
Models and Life-Tables” (Series B (Methodological), Vol. 34, No. 2 (1972), pp.
187-220) introducing the proportional hazard model, is one of the most famous
papers in statistics. According to Google Scholar as of February 2007 it has received
over 8500 citations. The volume of literature on the Cox proportional hazard model
is wide and deep ([18]). The theoretical foundations were secured years later with
the development of the counting process approach (see [2, 3, 13] ).

What explains the unparalleled success of the Cox model? This contribution
attempts to give insight into the reasons for its success and also its limitations.
The presentation is quasi formal, ideas are introduced and motivated from sampling
considerations rather than from theorems.

The guiding idea is model adequacy. Suppose you want to explain human lifespan
in terms of “covariates” that influence the lifespan. The first idea might be to
build a regression model; you obtain data on how long people live, how much they
smoke, their body mass index, their income, years of schooling, sex, race, exposure
to pollution and whatever else you can think of and measure. You regress lifespan,
or maybe log lifespan on these variables, in order to argue ‘For someone in your
situation, if you reduce smoking by A you can expect to live B years longer.’ But
first the question of model adequacy must be addressed, how much variance in the
lifespan data do you explain with your model? If you are told someone’s values on
all these explanatory variables, how much better can you predict his/her lifespan
than without this knowledge? If the answer is ’not very much’ then your predictions
shouldn’t carry much persuasive force.

Or should they? Cox’s key idea was to regress, not the lifespans themselves, but
the failure or hazard rates onto explanatory variables. However, we don’t observe
failure rates, just failures. How do we minimize mean square difference between
an observed and predicted failure rates? We don’t; there is no ‘residual in this
sense. The beauty of Cox regression is that it provides another way of finding
optimal estimates of the covariates’ coefficients. Very roughly, we find values of
the covariate coefficients such that the people with shorter lifespans tend to have
larger failure rates. The method is called ’maximization of partial likelihood’. It
works when we can factorize the failure rate, or its time integral, the cumulative
hazard function, into a time independent part depending on covariates and a time
dependent part independent of covariates. That explains the cohabitation of the
terms “proportional hazard model” and “partial likelihood”.
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Is it all too good to be true? The goal of this contribution is to enable the reader
to judge this for him/herself 1.

2. Proportional Hazard model

To simplify the presentation, we consider the case of time-invariant covariates
X, Y, Z without censoring and without ties. We consider data to be generated by
the following hazard rate

h(X,Y, Z) = Λ0(t)eXA+Y B+ZC(2.1)

where the cumulative baseline hazard function Λ0(t) =
∫ t

0
λ0(u)du is the time

integral of the baseline hazard rate λ0. The covariates (X, Y, Z) are considered as
random variables. The coefficients (A,B, C) and the baseline hazard Λ0 will be
estimated from life data. If this hazard function holds, then for an individual with
covariate values (x,y,z) the survivor function is

e−h(x,y,z).(2.2)

Suppose we observe times of death t1, ...tn such that ti < tj for i < j. Let the
covariates for the individual dying at time ti be denoted (xi, yi, zi). The coefficients
A,B, C are estimated by maximizing the partial likelihood

N∏

i=1

exiA+yiB+ziC

∑n
j≥i exjA+yjB+zjC

(2.3)

Note that the times of death ti do not appear in (2.3). The intuitive explanation
is as follows. Given that the first death in the population occurs at time t1, the
probability that it happens to individual 1 is ex1A+y1B+z1CPn

j≥1 exjA+yjB+zjC . After individual

1 is removed from the population, the same reasoning applies to the surviving
population; given that the second time of death t2, the probability that it happens
to individual 2 is ex2A+y2B+z2CPn

j≥2 exjA+yjB+zjC , and so on. Kalbfleisch and Prentice ([16]) note

that for constant covariates, (2.3) is the likelihood for the ordering of times of death.
The baseline hazard can be estimated from the data as described in ([16]p.114).

3. Model adequacy

With (x, y, z) fixed and T random, and with constant baseline hazard rate scaled
to one, the survivor function (2.2), considered as a function of the random variable
T is uniformly distributed on [0 , 1], that is

T ∼ −ln(U)/h.(3.1)

where U is uniform on [0, 1]. As this holds for each individual in the population
i = 1...N . If we order the values

e−tie
xiA+yiB+ziC

; i = 1...N(3.2)

1The author gratefully acknowledges many helpful comments from Bo Lindqvist
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and plot them against their number, the points should lie along the diagonal if the
proportional hazard model is true with coefficients A,B, C and constant baseline
hazard rate. (3.2) are the exponentials of the Cox Snell residuals; equal up to a
constant to the Martingale residual, used in the counting process approach. The
Cox Snell residuals are exponentially distributed if the model is correct.

This would provide an easy heuristic check of model adequacy if the baseline
hazard were indeed known to be constant and scaled to one. However, if the
baseline hazard is also estimated from the data, then this simple test does not
apply.

Testing model adequacy for the Cox model is not straightforward: This is a
sampling of statements found in the literature regarding model evaluation: ”it is
not apparent what kinds of departures one would expect to see in the residuals if
the model is incorrect, or even to what extent agreement with the anticipated line
should be expected” ([16], p128). ”For most purposes, you can ignore the Cox-
Snell and martingale residuals. While Cox-Snell residuals were useful for assessing
the fit of the parametric models in Chapter 4, they are not very informative for
the Cox models estimated by partial likelihood” ([1], p 173). ”Unfortunately, this
distribution theory [of the Cox Snell residuals as exponentially distributed] has not
proven to be as useful for model evaluation as the theory derived from the counting
process approach”. ([14] p. 202), ”there is not a single, simple, easy to calculate,
useful, easy to interpret measure [of model performance] for a proportional hazards
model.” ([14] p. 229). ”the martingale residuals can not play all the roles that
linear model residuals do; in particular the overall distribution of the residuals does
not aid in the global assessment of fit.” ([20] p 81). In many important studies,
model adequacy is not examined, and only individual coefficients for the covariate
of interest are reported, with Wald confidence bounds (eg [12, 19]). The coefficients
are used to compute relative risk, and form the basis of (dis)utility calculations for
different risk mitigation measures.

It may well arise that data generated with a constant baseline hazard appear to
acquire a time dependent baseline hazard as a result of missing covariates. Letting
¦̂ denote values estimated from the data, we may well find that the values

e−bΛ0(ti)e
xiÂ+yiB̂+ziĈ

; i = 1...N(3.3)

plot as uniform, while the estimates do not resemble the values which generated
the data. In particular, this may arise in the case of missing covariates. We
identify some covariates but many others may not be represented in our model.
For example, in considering the influence of airborne fine particulate matter on
non-accidental mortality [12, 19], covariates like smoking, sex, age, socio-economic
status, air quality, and weather are studied. However time to death is obviously in-
fluenced by myriad other factors like occupation, genetic disposition, stress, disease
prevalence, medical care, diet, alcohol consumption, home environment (eg radon),
travel patterns, etc.etc.

The following type of simple numerical experiment, which the reader may verify
for him/herself will illustrate the problems with model adequacy2.

(1) Choose coefficients (A,B, C), choose a constant baseline hazard rate scaled
to one, and choose a distribution for (X,Y, Z);

2The following simulations were performed with EXCEL and checked with S+.
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(2) Sample independently 100 values of (X,Y, Z) and 100 values from the uni-
form distribution on [0, 1]; compute failure times using (3.1);

(3) Estimate the coefficients by maximizing (2.3), and estimate the baseline
hazard.

This procedure does not require that the distributions of the covariates be cen-
tered at their means; indeed, centering is not standard procedure in applications.
However, the uniform distribution on [-1,1] used here is centered.

Let the model (2.1) be termed hXY Z . To study the effects of model incomplete-
ness estimate the coefficient A with a model hXY using only covariates X and Y ,
and with a model hX using only covariate X. For each of the models hXY Z , hXY

and hX , we repeat the above procedure 100 times with the same values for (A, B,C),
with (X,Y, Z) sampled independently from the (centered) uniform distribution on
[−1, 1]; however, we change (2.3) so as to estimate A in the models hXY and hX .
Figure 1 plots the ordered estimates of coefficient A.

Figure 1. 100 ordered estimates of A for hXY Z , hXY , hX ,
X,Y, Z ∼ U [−1, 1], (A,B, C) = (1, 1, 1); each estimate based on
100 samples

Evidently, the models hXY and hX tend to underestimate the coefficient A. A
theoretical explanation of this underestimation is given in [5, 17]. Hougaard [15]
shows that missing covariates sometimes result in non-proportional hazard func-
tions which could be detected with sufficient replications. He concludes that ”the
regression coefficients cannot be evaluated without consideration of the variability
of neglected covariates. This is a serious drawback of relative risk models”(p.92),
leading him to promote accelerated failure or frailty models. The tendency to un-
derestimate becomes more pronounced in Figure (2), where the missing covariate
Z has coefficient C = 5. In spite of this, the ordered values of (3.3) plot along
the diagonal, as shown in Figure (3). If we knew that the data was created with
λ̂0(t) ≡ 1, then we may impose this constraint on the survivor functions. From
Figure (4) we see that uniformity is lost for the incomplete models hyXY , hX ; but
not for the complete model hXY Z . This would provide an excellent diagnostic for
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completeness if we had a priori knowledge of the baseline hazard rate; unfortu-
nately in practice we do not have this knowledge. We can, however, find another
diagnostic (see below).

Figure 2. 100 ordered estimates of A for hXY Z , hXY , hX ,
X,Y, Z ∼ U [−1, 1], (A,B, C) = (1, 1, 5) each estimate based on
100 samples

Figure 3. Ordered values of (3.3) for hXY Z , hXY , hX , X, Y, Z ∼
U [−1, 1], (A,B, C) = (1, 1, 5)

Figure (5) shows the Wald 95% confidence bounds for A in model hX , in each
of the 100 repetitions of the experiment whose estimates are shown in Figure (2).
These bounds are derived assuming asymptotic normality of the Wald statistic

Â−A

σA



6 ROGER M. COOKE

Figure 4. Ordered values of (3.3) for hXY Z , hXY , hX , X, Y, Z ∼
U [−1, 1], (A,B, C) = (1, 1, 5) with Λ̂0(t) ≡ t;

where Â is the estimate of A and σA is derived from the observed information ma-
trix. If the likelihood function is correct, then the Wald statistic is asymptotically
standard normal. In as much as these 95% confidence bands contain the true value
A = 1 in only 7% of the cases, the wisdom of stating such confidence bounds when
model adequacy cannot be demonstrated may be questioned.

Figure 5. Wald 95% confidence bounds for A with model , hX of
Figure (2); each estimate based on 100 samples

The models hXY and hX are clearly incorrect and mis-estimate the covariate
A. Relative risk coefficients based on these models would be biased. Without
a priori knowledge of the baseline hazard function, their incorrectness cannot be
diagnosed using Cox-Snell or Martingale residuals, echoing the statements cited at
the beginning of this section. The problem is that the lack of fit caused by missing
covariates is compensated in the estimated baseline hazard function.
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This observation suggests that we might detect lack of fit in the covariates by
comparing the estimated baseline hazard function with the population cumulative
hazard function, that is, minus the natural logarithm of the population survivor
function. From (3.3) it is evident that adding a constant to any covariate is equiv-
alent to multiplying the baseline hazard by a constant. We therefore standardize
the covariates by centering their distributions on the means (the distributions here
already centered). This standardization can be motivated as follows. If the covari-
ates X, Y and Z have no effect, then their means in the set Ri of individuals at
risk at the time ti of death of the i− th individual, are just their means x̄, ȳ, z̄. We
write

∑

j∈Ri

exjA+yjB+zjC ∼
∑

j∈Ri

(1 + xjA)(1 + yjB)(1 + zjC).

If X,Y and Z are independent with mean zero then the mean of the right hand
side is just #Ri. The Breslow estimate [4] of the baseline hazard rate is

dΛ0(ti) = [
∑

j∈Ri

exjA+yjB+zjC ]−1

and the population cumulative hazard rate at ti is [#Ri]−1. Hence, under these
conditions, centering the covariates at their means, then replacing covariates with
their mean value (zero), would equate the cumulative baseline hazard function and
the population cumulative hazard function.

Figures (6, 7) show these comparisons for the two cases from Figures (1,2).
Note the difference in survival times (horizontal axis); this is caused by the heavier
loading of covariate Z in Figure (7). The Nelson Aalen estimator is used for the
population cumulative hazard function.

Figure 6. Cumulative population and baseline hazard functions
for hXY Z , hXY , hX , X, Y, Z ∼ U [−1, 1], (A,B, C) = (1, 1, 1)

We see in Figure (7) that the cumulative baseline hazard functions for hXY and
hX have moved closer to the population cumulative hazard, reflecting the heavier
loading on the missing covariate Z.
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Figure 7. Cumulative population and baseline hazard functions
for hXY Z , hyXY , hX , X, Y, Z ∼ U [−1, 1], (A,B,C) = (1, 1, 5)

If a Cox model had none of the actual covariates, this would be equivalent
to having zero coefficients on all covariates; and in this case the baseline hazard
would coincide with the population cumulative hazard. A simple heuristic test
of model adequacy would test the null hypothesis that the cumulative baseline
hazard function is equal to the population cumulative hazard function. If the null
hypothesis cannot be rejected, then using the Cox model would not be indicated.
In Figures (8, 9) the asymptotic 2-sigma bands on the asymptotic variance of the
Nelsen Aalen estimator of the population cumulative hazard function ([16], p.25)
have been added to Figures (6, 7). We see that with this simple test we would fail
to reject the null hypothesis for model hX after 100 observations in both cases. The
greater loading of missing covariate Z in Figure (9) causes the model hXY to fail
to reject the null hypothesis as well.

The more familiar partial likelihood ratio test calculates the test statistic G as
twice the difference between the the log partial likelihood of the model containing
the covariates and the log partial likelihood for the model not containing the co-
variates. G is asymptotically chi square distributed under the null hypothesis. The
above test may have some advantage in that it does not appeal to partial likelihood.
However, it is unable to detect the lack of fit in the model hXY when C = 1.

We note that for all the results mentioned above, the covariates are indepen-
dent. In practice independence is not usually checked, and not always plausible.
Figure (10) shows 100 estimates of the coefficient A for the models hXY Z , hyXY , hX

where the covariates are uniformly distributed on [0, 1] with correlations ρ(X, Z) =
0.98, ρ(Y, Z) = 0.41 . Whereas missing covariates produce under-estimation in
the case of independence, we see that dependence in Figure(10) produces over-
estimation. Note also that the spread of estimates for the complete model hXY Z is
very wide.
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Figure 8. Cumulative population and baseline hazard functions
for hXY Z , hyXY , hX , X, Y, Z ∼ U [−1, 1], (A,B, C) = (1, 1, 5) with
2-sigma confidence bands (dashed lines)

Figure 9. Cumulative population and baseline hazard functions
for hXY Z , hyXY , hX , X, Y, Z ∼ U [−1, 1], (A,B, C) = (1, 1, 1) with
2-sigma confidence bands (dashed lines)

4. Censoring and Competing Risk

The discussion of model adequacy with the proportional hazard model is some-
times clouded by the role of censoring. The following statement is representative:
”A perfectly adequate model may have what, at face value, seems like a terribly
low R2 due to a high percent of censored data” ([14] p. 229). The reference to R2

must be taken as metaphorical. The proportional hazard model proposes a linear
regression of the log hazard function. The hazard function is not observed, and
hence a measure of the difference between observed and predicted values, like R2
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Figure 10. 100 ordered estimates of A for
hXY Z , hyXY , hX , X, Y, Z ∼ U [0, 1], (A,B, C) = (1, 1, 1) with
dependent covariates

is not meaningful. The point is that the ability of a proportional hazard model to
”explain the data” might be obscured by censoring.

Right censoring of course is a form of competing risk. In this section we review
some recent results from the theory of competing risk, and indicate how they may
yield diagnostic tools in proportional hazard modelling. In the competing risks
approach we model the data as a sequence of i.i.d. pairs (Ti, δi), i = 1, 2, . . ..
Each T is the minimum of two or more variables, corresponding to the competing
risks. We will assume that there are two competing risks, described by two random
variables D and C such that T = min(D,C). D will be time of death which is
of primary interest, while C is a censoring time corresponding to termination of
observation by other causes. In addition to the time T one observes the indicator
variable δ = I(D < C) which describes the cause of the termination of observation.
For simplicity we assume that P (D = C) = 0.

It is well known (Tsiatis[21]) that from observation of (T, δ) we can identify only
the subsurvivor functions of D and C:

S∗D(t) = P (D > t, D < C) = P (T > t, δ = 1)
S∗C(t) = P (C > t,C < D) = P (T > t, δ = 0),

but not in general the true survivor functions of D and C, SD(t) and SC(t). Note
that S∗D(t) depends on C, though this fact is suppressed in the notation. Note also
that S∗D(0) = P (D < C) = P (δ = 1) and S∗C(0) = P (C < D) = P (δ = 0), so that
S∗D(0) + S∗C(0) = 1.

The conditional subsurvivor functions are defined as the survivor functions con-
ditioned on the occurrence of the corresponding type of event. Assuming continuity
of S∗D(t) and S∗C(t) at zero, these functions are given by

CS∗D(t) = P (D > t|D < C) = P (T > t|δ = 1) = S∗D(t)/S∗D(0)
CS∗C(t) = P (C > t|C < D) = P (T > t|δ = 0) = S∗C(t)/S∗C(0).
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Closely related to the notion of subsurvivor functions is the probability of cen-
soring beyond time t,

Φ(t) = P (C < D|T > t) = P (δ = 0|T > t) =
S∗C(t)

S∗D(t) + S∗C(t)
.

This function has some diagnostic value, aiding us to choose among competing risk
models to fit the data. Note that Φ(0) = P (δ = 0) = S∗C(0).

As mentioned above, without any additional assumptions on the joint distribu-
tion of D and C, it is impossible to identify the marginal survivor functions SD(t)
and SC(t). However, by making extra assumptions, one may restrict to a class
of models in which the survivor functions are identifiable. A classical result on
competing risks [21, 22] states that, assuming independence of D and C, we can
determine uniquely the survivor functions of D and C from the joint distribution of
(T, δ), where at most one of the survivor functions has an atom at infinity. In this
case the survivor functions of D and C are said to be identifiable from the censored
data (T, δ). Hence, an independent model is always consistent with data.

If the censoring is assumed to be independent then the survivor function for T ,
the minimum of D and C, can be written as

ST (t) = SD(t)SC(t)(4.1)

If we assume that D obeys a proportional hazard model, and that the censoring
is independent, then we may estimate the coefficients by maximizing the partial
likelihood function adapted to account for censoring:

∏

i∈DN

exiA+yiB+ziC

∑n
j≥i exjA+yjB+zjC

(4.2)

where DN is the subset of observed times t1, ...tN at which death is observed to
occur, and j runs over all times corresponding to death or censoring.

If we now substitute the survivor function with estimated coefficients into (4.1),
and use the familiar Kaplan Meier estimator for SC , then we may apply the ideas
of the previous section to assess model adequacy [8].

5. Conclusions

The user of the Cox proportional hazard model may be assured that if the
model is correct, then the the coefficient estimates will converge to the true values,
and the confidence bands will accurately reflect sampling fluctuations around these
true values. If the model is not correct, however, then the coefficients’ estimates
may not be correct, and the confidence bands may give a misleading picture. If
the covariates are independent, and if one or more covariates is omitted, then the
coefficients of the other covariates will be underestimated in absolute value. If there
is dependence between missing and included covariates, then nothing can be said
about the direction of the error.

How can we check whether the model is correct? This remains the difficult point.
We can test whether covariates are significantly different from zero. However, when
covariates pass this test, it does not mean that they will be estimated correctly.
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