Statistical Structures of Low Density Pedestrian Dynamics

Alessandro Corbetta
Eindhoven University of Technology, NL

with:
Chung-Min Lee (CSULB), Roberto Benzi (Rome 2),
Adrian Muntean (TU/e), Federico Toschi (TU/e)
Introduction & Motivation

• Walking pedestrians: *rich & complex dynamics*
 – Reliable models: relevant in science & technology

• Stochastic, nearly unpredictable motion
 – *Quantitative-(statistical) assessment of fluctuations?*
 • Measurements?
 • Rare behaviors?
 • Modeling?
Introduction & Motivation

• This presentation:
 – “low density” pedestrian dynamics in a corridor
 • Quantitative-(statistical) models?

• Content:
Introduction & Motivation

• This presentation:
 - “low density” pedestrian dynamics in a corridor
 • Quantitative-(statistical) models?

• Content:
 1. High statistic resolution measurements
 2. Analysis of stochastic fluctuations
 Quantitative model up to rare events
High statistics measurements approach

- Real-life setting
- 1y recording ~h24,
- ~2.2K people every weekday
- ~230K tracks dataset

Metaforum building, TU/e

[Seer et al. 2014, Corbetta et al. 2014, Corbetta et al. 2015]
Pedestrian tracking technique

• **1. Heads detection**
 – Overhead, 3d view
 • Depthmap-based, Via Microsoft Kinect
 • (Complete) clustering of “depth-cloud”
 • 15Hz sampling

Clusterization tree cut at “body scale”

Heads marked as low depth (closest) percentiles

(Seer et Al., 2014)
Pedestrian tracking technique

- **2. Head tracking**
 - Head Spatio-Temporal matching via 3DPTV
 - Nearest search with velocity prediction

- Implementation:

Acknowledgment: A. Liberzon (TAU)
Traffic - local occupancy

Occupancy = 2

Occupancy = 5

1 week

Week 3rd Feb ’14

Lunch peak

Break peak

Week 5th Feb ’14
Many flow conditions

Ensemble of trajs.

Co-Flows

Counter-flows

Undisturbed pedestrians

Partitioning ensemble trajectories in flow classes

=> statistics per-class
Fundamental diagrams

Simple per-class statistics on velocities

- L-R symmetry broken
- Descending direction faster
- Counter-flow > Co-flow (at same load)
 - Ped. ascending might have trays

[Corbetta et. al 2014]
Beyond average values...

• Full probability distribution functions
 – Analyze stochasticity
 – Mathematical models

• Now: undisturbed pedestrians
Undisturbed pedestrian dynamics

- Simple scenario
 - Pedestrians **cross** the corridor (L -> R)
 - No reasons to stop
Undisturbed pedestrian dynamics

- Rare events: trajectory inversions
1. Preferred walking path
2. “Confined” transversal motion
3. longit. & transv. fluctuations
High-statistics perspective

1. Preferred walking path
2. “Confined” transversal motion
3. longit. & transv. fluctuations
Can we reproduce this behavior in statistical sense?

Langevin-like equation

Second order stochastic dynamics:

\[\dot{x} = v \]

\[\dot{v} = -\nabla_v K(v) - \nabla_x V(x) + \dot{W} \]

- Activity (active friction for propulsion)
- Spatial confinement
- Random external factors
Transversal fluctuations

Stochastic motion around preferred path:
Quadratic potential for position (V) and velocity (K)

Confined Gaussian fluctuation: \[\dot{v} = -2\gamma v - 2\beta y + \sigma_y \dot{w} \]
Bi-stable longitudinal motion

4^{th} order velocity potential velocity (K)
Simplest bi-stable stochastic velocity dynamics

Small fluctuations

Stable velocity states
Bi-stable longitudinal motion

4th order velocity potential velocity (K)
Simplest bi-stable stochastic velocity dynamics

Trajectory inversions

Stable velocity states
• Inversion dynamics captured in velocity pdf
• Rare and uncorrelated => Poisson statistics

\[\dot{u} = 4\alpha u(u^2 - u_p^2) + \sigma_x \dot{w} \]

[A. Corbetta et. al, to be submitted]
Conclusion

• Analyzed pedestrian dynamics via large experimental datasets
 – Statistic insights possible
 – Analogous features expected in low density crowds

• Simple Langevin-like model to reproduce stochastic features of undisturbed pedestrians motion
 – Quantitative
 – Small fluctuations and rare inversions captured within same model

• Next:
 – Avoidance dynamics in pairs & higher order interactions
 [A. Corbetta, Phd Thesis, 2015 – soon online]
 – Statisticity investigation at high density regimes?
References

4. The OpenPTV initiative, 2012 - , www.openptv.net
8. A. Corbeta, C. Lee, R. Benzi, A. Muntean, F. Toschi, Fluctuations and mean behaviours in diluted pedestrian flows, to be submitted