Statistical models for pedestrian behaviour in front of bottlenecks

Nikolai Bode

Department of Engineering Mathematics, University of Bristol

TGF’15, Delft, 28 October 2015
Movement of pedestrian crowds
Movement of pedestrian crowds

1. How do individuals interact?
2. Do interactions differ across contexts?
Focus on bottleneck scenario

1. How do individuals interact?
2. Do interactions differ across contexts?

Model microscopic interactions in front of bottleneck.
Time between consecutive pedestrians

Statistical models: $\Delta t \sim \Gamma(\mu, \sigma)$

e.g. $\mu = [p_1(d_C - d_B) - p_2]^2$
Example

\[\Delta t \sim \Gamma(\mu, \sigma) \]

\[\Delta t \sim \Gamma(\mu, \sigma) \]
Candidate models

Models for μ:

m_0: assume μ is constant

m_1: assume μ depends on density

m_2: assume μ depends on difference in distance between B and C

m_3: assume μ depends on angle between B and C

m_4: assume μ depends on distance of closest pedestrian

... consider combinations of models...
Model fitting

Statistical models: \(\Delta t \sim \Gamma(\mu, \sigma) \)

p.d.f. of gamma distribution: \(f_\Gamma \)

Likelihood of a model:

\[
L = \prod_k f_\Gamma(\Delta t_k; \mu_k, \sigma)
\]

(assume models describe dependencies between consecutive \(\Delta t_k \))

Find model parameters that maximise \(L \).
Model selection

![Graph showing model selection with AIC values on the y-axis and models on the x-axis. The graph indicates the comparison of different models based on their AIC scores.]
Comparing different contexts
Comparing different contexts

- Simulations are not fitted to experiments
Comparing different contexts
Residual plots
Residual plots
Summary

- Can isolate most likely mechanism from candidates.

- Can use this to compare microscopic behaviour across contexts (*check simulation models*).

- Residual plots highlight aspects not explained by statistical models.

NOTE: if interactions inside bottleneck are important, the approach may not be appropriate.
Further work

- Framework is general and can be extended (e.g. social groups, age differences).
- Apply to a range of experiments/models.
- Consider wider exits.
- Investigate changes in behaviour over time.
Acknowledgements

Many thanks to:

Edward Codling (Essex)
Participants
Science Museum London

Thank you for listening!

Funding

AXA
Research Fund
Through Research, Protection

The Leverhulme Trust