Green-wave analysis in a tandem of traffic-light intersections

A. Oblakova, A. Al Hanbali, R.J. Boucherie, J.C.W. van Ommeren, W.H.M. Zijm
Overview

- Network of intersections
- Stochastic model
- Numerical results
Overview

- Network of intersections
- Stochastic model
- Numerical results
Network of intersections
Fixed length of each phase.
Network of intersections: fixed control

- Each lane has fixed green and red times.
 - no real-time data
- Fixed common cycle length, c, in the network.
 - coordination between intersections
- Control parameters: green times and offsets.
 - offset is time between coordinated phases of two intersections
Overview

- Network of intersections
- Stochastic model
- Numerical results
Service process is time-dependent.

Discrete-time model
Stochastic model: problems

- Service process is time-dependent.
 - discrete-time model
- High dimension of the system.
 - network decomposition into separate lanes
Stochastic model: problems

- Service process is time-dependent.
 - discrete-time model
- High dimension of the system.
 - network decomposition into separate lanes
- Dependency between lanes.
 - arrival process
Stochastic model: network
Stochastic model: external lane

$P = 0$

$Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y$

$\text{Bernoulli arrivals: i.i.d.}$

$\text{Delayed departure at second } s + P + d_k$, where s— beginning of the green time, P— distraction variable, d_k— deterministic second of the kth delayed vehicle.

If the queue becomes empty, all the arrivals proceed without stopping.
Stochastic model: external lane

Bernoulli arrivals: i.i.d. Y.
Stochastic model: external lane

Bernoulli arrivals: i.i.d. Y.

Delayed departure at second $s + P + d_k$, where s — beginning of the green time, P — distraction variable, d_k — deterministic second of the k^{th} delayed vehicle.
Stochastic model: external lane

- Bernoulli arrivals: i.i.d. Y.
- Delayed departure at second $s + P + d_k$, where s — beginning of the green time, P — distraction variable, d_k — deterministic second of the kth delayed vehicle.
- If the queue becomes empty, all the arrivals proceed without stopping.
Stochastic model: internal lane

Correlated arrivals.

Acceleration of the delayed departures.
Markovian arrival process

- Underlying Markov chain $L_i, i = 0, \ldots, c - 1$.
- States represent information that determines arrivals, e.g., the number of delayed departures at the upstream lane.
- $\mathbb{P}(Y_i = 1|L_i = l, Y_0, \ldots, Y_{i-1}) = \lambda_i^l$.
Markovian arrival process

- red second
- green second without departures
- green second with a delayed departure
- green second with a free departure

combined input
The arrivals during different cycles are independent.
Independence assumption

- The arrivals during different cycles are independent.

Under this assumption, we prove that the pgf of the queue length at a lane at the beginning of the cycle has form:

\[
X(z) = \frac{\sum_{j=0}^{n-1} x_j f_j(z)}{z^n - A(z)C(z)},
\]

where \(n \) is the maximum capacity, \(x_j = P(X_0 = j) \), \(A(z) \) — the pgf of arrivals, \(C(z) \) — the pgf of the lost capacity due to randomness of \(P \), \(f_j(z) \) — polynomials.
Overview

- Network of intersections
- Stochastic model
- Numerical results
What is a **good green wave**?
Green-wave efficiency

What is a good green wave?

Definition The *green-wave efficiency* is the expected number of intersections passed without stopping for an arbitrary vehicle.
Green-wave efficiency

What is a good green wave?

Definition The *green-wave efficiency* is the expected number of intersections passed without stopping for an arbitrary vehicle.

- In an ideal green wave, the green-wave efficiency is equal to the expected number of intersections for a vehicle.
Green-wave efficiency

What is a **good green wave**?

Definition The *green-wave efficiency* is the expected number of intersections passed without stopping for an arbitrary vehicle.

- In an ideal green wave, the green-wave efficiency is equal to the expected number of intersections for a vehicle.
- In the worst case scenario, all of the vehicles need to stop, and our measure is equal to 0.
Optimisation: network of intersections

- Cars
- Decelerating car
- Turning car
- Traffic lights
Optimisation: parameters

We consider a tandem of 3 intersections (100 meters apart):

- the arrival rate from west is λ,
- the arrival rate from east is 0.5λ,
- the arrival rate from north and south is 0.2λ,
- 16% of the major traffic turns south or north,
- 40% (20%) of the minor traffic turns east (west).
Optimisation: objectives and constraints

Optimisation with multiple objectives:
- maximising the green-wave efficiency,
- minimising the average delay
Optimisation: objectives and constraints

Optimisation with multiple objectives:
- maximising the green-wave efficiency,
- minimising the average delay

for
- fixed cycle length of 60 seconds,
- given phase schedule.
Optimisation: approaches

- Genetic algorithm coupled with our model, multiple objectives
- SUMO cycle program generator (SCPG), Webster (proportional) green time allocation
- MAXBAND. bandwidth maximisation
Optimisation results: Pareto optimality

Green-wave analysis for a traffic-light network
Optimisation: phases

Phase 1

Phase 2

Phase 3

Phase 4
Optimisation results: Pareto optimality load 0.7

Green-wave analysis for a traffic-light network

Green times:
- [7, 7, 20, 2], [7, 7, 20, 2], [7, 7, 20, 2]
- [7, 7, 19, 3], [7, 7, 20, 2], [7, 7, 20, 2]
- [8, 7, 18, 3], [7, 7, 20, 2], [7, 7, 20, 2]
- [7, 7, 20, 2], [7, 6, 21, 2], [7, 7, 20, 2] or
- [7, 7, 20, 2], [7, 6, 21, 2], [7, 7, 20, 2]
- [7, 7, 19, 3], [7, 6, 21, 2], [7, 7, 20, 2] or
- [7, 7, 19, 3], [7, 7, 20, 2], [7, 6, 21, 2]
- [8, 7, 18, 3], [7, 6, 21, 2], [7, 7, 20, 2] or
- [8, 7, 18, 3], [7, 7, 20, 2], [7, 6, 21, 2]
- Other
Conclusions

- It is important to take the real behaviour of traffic into account.
- Optimisation for the best green wave may be disadvantageous for the average delay.
- The average delay per vehicle is very sensitive to the changes in the green times.